首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Enterovirus 71 (EV71) is a common cause of Hand, foot, and mouth disease (HFMD) and may also cause severe neurological diseases, such as encephalitis and poliomyelitis-like paralysis. To examine the genetic diversity of EV71, we determined and analyzed the complete VP1 sequences (891 nucleotides) from nine EV71 strains isolated in Fuyang, China. We found that nine EV71 strains isolated were over 98% homologous at the nucleotide level and 93%-100% homologous to members of the C4 subgenogroup. At the amino acid level, these Fuyang strains were 99% -100% homologous to one another, 97%-100% homologous to members of the C4 subgenogroup, and the histidine(H) at amino acid position 22 was conserved among the Fuyang strains. The results indicate that Fuyang isolates belong to genotype C4, and an H at position 22 appears to be a marker for the Fuyang strains.  相似文献   

2.
中国EV71病毒VP1蛋白生物信息学分析   总被引:1,自引:0,他引:1  
以肠道病毒71型(Enterovirus71,EV71)VP1蛋白基因序列为基础,利用生物软件对EV71病毒中国分离株VP1蛋白进行进化树、N-糖基化位点、二级结构及抗原位点的预测和分析。结果显示国内分离株多为C4亚型,有3株湖南分离株为A型,提示疫苗的研发应着重于预防C4b亚型EV71疫苗的研发。  相似文献   

3.
Enterovirus type 71(EV71) causes severe hand-foot-and-mouth disease (HFMD) resulting in hundreds of deaths of children every year; However, currently, there is no effective treatment for EV71. In this study, the EV71 poly-protein (EV71-P1 protein) gene was processed and cloned into the eukaryotic expression vector pPIC9k and then expressed in Pichia pastoris strain GS115. The EV71 P1 protein with a molecular weight of 100 kD was produced and secreted into the medium. The soluble EV71 P1 protein was purified by column chromatography with a recovery efficiency of 70%. The result of the immunological analysis showed that the EV71 P1 protein had excellent immunogenicity and could stimulate the production of EV71-VP1 IgG antibody in injected rabbits. We suggest that EV71-P1 protein is an ideal candidate for an EV71 vaccine to prevent EV71 infection.  相似文献   

4.
Human enterovirus 71 viruses have been long circulating throughout the world. In this study, we performed a positive selection analysis of the VP1 genes of capsid proteins from Enterovirus 71 viruses. Our results showed that although most sites were under negative or neutral evolution, four positions of the VP1 genes were under positive selection pressure. This might account for the spread and frequent outbreaks of the viruses and the enhanced neurovirulence. In particular, position 98 might be involved in neutralizing antibodies, modulating the virus-receptor interaction and enhancing the virulence of the viruses. Moreover, both positions 145 and 241 might correlate to determine the receptor specificity. However, these positions did not display much difference in amino acid polymorphism. In addition, no position in the VP1 genes of viruses isolated from China was under positive selection.  相似文献   

5.
6.
Pyridyl imidazolidinone is a novel class of capsid binder which can inhibit enterovirus 71 (EV71). In this study, we tested the susceptibility of six recombinant viruses with different single-site mutations in VP1. Eleven modified pyridyl imidazolidinones were synthesized and used to probe the interaction between these compounds and the EV71 VP1 protein. We found that the D31N or E98K mutant viruses were susceptible to bulkier compounds, which suggested that mutations at these two sites in VP1 may widen the hydrophobic pocket of VP1, allowing bulkier compounds to enter and interfere VP1-receptor binding. Additionally, the Y116H mutant was more resistant to pyridyl imidazolidinone compounds containing a methyl group in the central position of the hydrophobic linker. When a trifluoromethyl group was substituted for the methyl group in the middle of the linker chain, the inhibitory effect was totally abolished in the Y116H mutant, suggesting that the interaction between Tyr (Y) 116 of VP1 and the central position of the linker chain of pyridyl imidazolodinone is very important for drug efficacy. A V192M mutant was resistant to most of the derivatives, indicating that residue 192 is a key mutation for resistance to pyridyl imidazolidinone.  相似文献   

7.
对河南省2008~2010年河南省人肠道病毒71型进行基因特征及重组特点研究。对河南省2008~2010年分离的5株肠道病毒EV71型构建VP1序列系统进化树并分析其全基因组序列的重组特点。VP1序列系统进化分析显示2008~2010年河南株均属于C4基因型的C4a亚群,Bootscan分析和5’NCR、P1、P2、P3区的进化树证实C4基因型在2A~2B处存在EV71的B基因型和C基因型的型内重组及在3B~3C处存在EV71的B基因型和CA16/G-10间的型间重组。2008~2010年河南EV71分离株为C4基因型的C4a亚群,与2004年以来的中国大陆优势株流行趋势完全一致,EV71C4基因型存在基因型内和型间双重组现象。  相似文献   

8.
9.
Chen P  Song Z  Qi Y  Feng X  Xu N  Sun Y  Wu X  Yao X  Mao Q  Li X  Dong W  Wan X  Huang N  Shen X  Liang Z  Li W 《The Journal of biological chemistry》2012,287(9):6406-6420
Enterovirus 71 (EV71) is one of the major pathogens that cause hand, foot, and mouth disease outbreaks in young children in the Asia-Pacific region in recent years. Human scavenger receptor class B 2 (SCARB2) is the main cellular receptor for EV71 on target cells. The requirements of the EV71-SCARB2 interaction have not been fully characterized, and it has not been determined whether SCARB2 serves as an uncoating receptor for EV71. Here we compared the efficiency of the receptor from different species including human, horseshoe bat, mouse, and hamster and demonstrated that the residues between 144 and 151 are critical for SCARB2 binding to viral capsid protein VP1 of EV71 and seven residues from the human receptor could convert murine SCARB2, an otherwise inefficient receptor, to an efficient receptor for EV71 viral infection. We also identified that EV71 binds to SCARB2 via a canyon of VP1 around residue Gln-172. Soluble SCARB2 could convert the EV71 virions from 160 S to 135 S particles, indicating that SCARB2 is an uncoating receptor of the virus. The uncoating efficiency of SCARB2 significantly increased in an acidic environment (pH 5.6). These studies elucidated the viral capsid and receptor determinants of enterovirus 71 infection and revealed a possible target for antiviral interventions.  相似文献   

10.
11.
为探讨肠道病毒71型(EV71)VP4基因序列与手足口病(HFMD)不同临床类型之间的关系,分析重组蛋白EV71 VP4的抗原性,并初步探讨其与柯萨奇病毒A16(CA16)重组蛋白VP4是否存在交叉反应性,对2007~2009年从北京患HFMD儿童标本分离到的10株EV71的VP4基因进行克隆测序,运用生物学软件对测序结果进行比较分析,并选择其中1株与1株同期分离的CA16的VP4分别进行原核表达;用表达产物对189份正常体检的成人及来首都儿科研究所就医的非HFMD患儿血清中的IgG进行Western Blot检测,并分析14份确诊为EV71感染和12份CA16感染患者急性期血清中的IgM抗体。分析表明这10株EV71 VP4基因核苷酸同源性为94.20%~100.00%,所推导的氨基酸序列则完全相同,从重症与轻症患儿分离的毒株之间VP4的核苷酸序列未见一致性的差异,基于EV71 VP4基因核苷酸序列的进化树分析表明2007~2009年北京地区所流行的毒株均属于C4亚型;本研究中EV71和CA16的VP4核苷酸序列的同源性为69.60%,所推导的氨基酸序列的同源性为78.60%,在运用Western Blot检测189份血清中的VP4特异性IgG时,EV71 VP4的血清阳性率为38.10%,说明其具有良好的抗原性,CA16 VP4的血清阳性率为58.20%,两者差别具有显著统计学意义(2χ=15.30,P<0.01),提示EV71 VP4与CA16 VP4没有交叉反应性;在用表达的VP4检测已确诊为相应病毒的特异性IgM时,两者皆为阴性,提示感染后机体对VP1和VP4产生不同的反应。  相似文献   

12.

Background

Clinical manifestations of enterovirus 71 (EV71) range from herpangina, hand-foot-and-mouth disease (HFMD), to severe neurological complications. Unlike the situation of switching genotypes seen in EV71 outbreaks during 1998–2008 in Taiwan, genotype B5 was responsible for two large outbreaks in 2008 and 2012, respectively. In China, by contrast, EV71 often persists as a single genotype in the population and causes frequent outbreaks. To investigate genetic changes in viral evolution, complete EV71 genome sequences were used to analyze the intra-genotypic evolution pattern in Taiwan, China, and the Netherlands.

Results

Genotype B5 was predominant in Taiwan’s 2008 outbreak and was re-emergent in 2012. EV71 strains from both outbreaks were phylogenetically segregated into two lineages containing fourteen non-synonymous substitutions predominantly in the non-structural protein coding region. In China, genotype C4 was first seen in 1998 and caused the latest large outbreak in 2008. Unlike shifting genotypes in Taiwan, genotype C4 persisted with progressive drift through time. A majority of non-synonymous mutations occurred in residues located in the non-structural coding region, showing annual increases. Interestingly, genotype B1/B2 in the Netherlands showed another stepwise evolution with dramatic EV71 activity increase in 1986. Phylogeny of the VP1 coding region in 1971–1986 exhibited similar lineage turnover with genotype C4 in China; however, phylogeny of the 3D-encoding region indicated separate lineage appearing after 1983, suggesting that the 3D-encoding region of genotype B2 was derived from an unidentified ancestor that contributed to intra-genotypic evolution in the Netherlands.

Conclusions

Unlike VP1 coding sequences long used for phylogenetic study of enteroviruses due to expected host immune escape, our study emphasizes a dominant role of non-synonymous mutations in non-structural protein regions that contribute to (re-)emergent genotypes in continuous stepwise evolution. Dozens of amino acid substitutions, especially in non-structural proteins, were identified via genetic changes driven through intra-genotypic evolution worldwide. These identified substitutions appeared to increase viral fitness in the population, affording valuable insights not only for viral evolution but also for prevention, control, and vaccine against EV71 infection.  相似文献   

13.
构建了肠道病毒71型(EV71)中国(深圳)分离株SHZH03全基因组的8个相互重叠的克隆,对其全基因组7406bp的核苷酸进行序列测定,利用DNA—Star软件分析外壳蛋白基因VP1的遗传进化。结果表明,SHZH03和SHZH98与亚洲流行株中的台湾1998年流行株、日本1999年流行株的遗传距离较近,而与新加坡2000年和2001年流行株的遗传距离较远;SHZH03株与一些欧洲流行株有较大的差异。以上结果说明我国深圳地区流行的肠道病毒71型有可能来源于台湾1998年的EV71大规模流行时的毒株。  相似文献   

14.
目的:重组表达肠道病毒71型(EV71)外壳蛋白VP1全长,用于研制血清学检测试剂和疫苗研发。方法:在获得EV71全长基因并测序正确的基础上,将外壳蛋白VP1全长基因克隆到表达载体pET28a(+)上,构建重组表达质粒pET28a(+)/VP1,转化大肠杆菌BL21,IPTG诱导表达,利用Ni2+亲和层析柱对重组蛋白进行纯化,采用双抗原夹心检测技术评价重组抗原与27份EV71抗体阳性血清和18份阴性血清的反应情况。结果:重组EV71-VP1蛋白在大肠杆菌中诱导6 h后可获得高效表达,能与27份EV71抗体阳性血清中的21份发生阳性反应,EV71双抗原夹心检测与中和血清测试结果具有很好的一致性(P0.05)。结论:实现了肠道病毒71型外壳蛋白VP1的高效表达,为肠道病毒71型诊断试剂和疫苗的研究奠定了基础。  相似文献   

15.
16.
Two novel ent-atisane type diterpenoids possessing the extra unusal 2-oxopropyl moiety (1 and 2) and four known analogues have been isolated from the roots of Euphorbia ebracteolata. The structures and absolute configurations of these compounds were determined by extensive spectroscopic data analysis, including 2D NMR, single-crystal X-ray crystallography, 13C NMR calculation, and electronic circular dichroism spectra calculation. Compounds 1 and 2 are the first examples of natural products with ent-atisane type diterpenoids possessing 2-oxopropyl skeleton. Compounds 2, 3, 5, and 6 show antiviral activities against human rhinovirus 3, with IC50 values of 25.27–90.35 μM. Compounds 5 and 6 showed moderate antiviral activities against EV71 at a concentration of 100 μM.  相似文献   

17.
《Cell reports》2023,42(4):112389
  1. Download : Download high-res image (173KB)
  2. Download : Download full-size image
  相似文献   

18.
The VP1 gene of enterovirus 70 (EV70) possesses a large number of Escherichia coli low-usage codons (11.0%) and a bacterial ribosome binding site complementary sequence (RBSCS) 5'-UGUCUCCUUUUC-3' flanking the codon 139. Plasmids containing EV70 cDNA encoding the full-length VP1 failed to express in E. coli (BL21(DE3), Rosetta 2(DE3) or Rosetta (DE3)pLysS). High expression (>8% of total protein) of recombinant VP1 (rVP1m) in E. coli required engineering of the encoding cDNA (conserved modification of the native cDNA) by simultaneous substitution of a rare-codon cluster located between codons 103 and 132, and replacement of the RBSCS-TCCTTT sequence. The rare-codon frequencies of the cDNAs encoding VP1 non-overlapping terminal fragments N138 (1-138 aa) and C170 (141-310 aa) are similar (10.9 and 11.2%, respectively). However, in E. coli, high expression of recombinant C170 (rC170) required no modification of the native cDNA whereas high expression of recombinant N138 (rN138m) required minimal synonymous substitution of the above rare-codon cluster. The rare-codon cluster of EV70 VP1 gene has five least-usage arginine codons (AGG/AGA) and three tandem rare-codon pairs (AGGAGG, CUAAGG, and AGACUA). Our results suggest that the rare-codon cluster (its rare codon arrangement per se and/or its related mRNA secondary structure(s)) and the RBSCS in EV70 VP1 gene, not the rare-codon frequency, constitute the key elements that suppress its expression in E. coli.  相似文献   

19.
肠道病毒71型(EV71)的非结构蛋白2C(P2C)在病毒复制周期中起着重要的作用,制备P2C的特异性抗体,对研究P2C的生物学功能以及EV71与宿主相互作用的具体机制有非常重要的意义。实验将2C基因克隆到原核表达载体p ET-28a(+)上,在大肠埃希菌BL21(DE3)中表达出重组蛋白r P2C,进一步优化原核表达条件,在温度为30℃,诱导剂IPTG浓度为1 mmol/L时,蛋白表达量最高,且主要以包涵体形式存在。直接将获得的r P2C通过SDS-PAGE分离后免疫新西兰兔,制备EV71病毒P2C的兔多克隆抗体。通过Western blot检测,该抗体在110 000稀释比例下仍能很好地识别原核表达的r P2C。同时该抗体也能很好地检测到EV71感染RD细胞中的P2C。因此,实验制备出的抗P2C抗体特异性强、效价高,为后续P2C功能的研究以及EV71病毒检测提供了良好的材料。  相似文献   

20.
构建、表达并纯化了HBcAg与HBsAg前S1表位肽融合蛋白BTcs1,为开发新型HBV治疗和预防性疫苗提供实验依据。利用DNA重组技术,构建了HBcAg与HBsAg前S1表位肽融合蛋白原核表达质粒pBTcs1,在大肠杆菌(HB101)中进行表达,用蔗糖密度梯度超速离心对表达产物BTcs1进行纯化,用SDS-PAGE、SEC、WESTERN-BLOT和电镜进行鉴定。结果表明成功构建了HBcAg与HBsAg前S1表位肽融合蛋白原核表达质粒pBTcs1,BTcs1的表达量为20-25 mg/L,DOT-BLOT结果显示BTcs1主要分布在30%-50%蔗糖介质中,SDS-PAGE和SEC结果显示蛋白纯度>95%,WESTERN-BLOT结果显示BTcs1可以与抗HBcAg抗体和抗HBsAg前S1抗体特异杂交,显色条带在约28 kD处,电镜分析表明BTcs1可以自主组装成病毒样颗粒(VLP),直径约为30-34 nm。本研究为进一步探讨BTcs1的功能及应用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号