首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coenzyme Q (Q) functions in the electron transport chain of both prokaryotes and eukaryotes. The biosynthesis of Q requires a number of steps involving at least eight Coq polypeptides. Coq5p is required for the C-methyltransferase step in Q biosynthesis. In this study we demonstrate that Coq5p is peripherally associated with the inner mitochondrial membrane on the matrix side. Phenotypic characterization of a collection of coq5 mutant yeast strains indicates that while each of the coq5 mutant strains are rescued by the Saccharomyces cerevisiae COQ5 gene, only the coq5-2 and coq5-5 mutants are rescued by expression of Escherichia coli ubiE, a homolog of COQ5. The coq5-2 and coq5-5 mutants contain mutations within or adjacent to conserved methyltransferase motifs that would be expected to disrupt the catalysis of C-methylation. The steady state levels of the Coq5-2 and Coq5-5 mutant polypeptides are not decreased relative to wild type Coq5p. Two other polypeptides required for Q biosynthesis, Coq3p and Coq4p, are detected in the wild type parent and in the coq5-2 and coq5-5 mutants, but are not detected in the coq5-null mutant, or in the coq5-4 or coq5-3 mutants. The effect of the coq5-4 mutation is similar to a null, since it results in a stop codon at position 93. However, the coq5-3 mutation (G304D) is located just four amino acids away from the C terminus. While C-methyltransferase activity is detectable in mitochondria isolated from this mutant, the steady state level of Coq5p is dramatically decreased. These studies show that at least two functions can be attributed to Coq5p; first, it is required to catalyze the C-methyltransferase step in Q biosynthesis and second, it is involved in stabilizing the Coq3 and Coq4 polypeptides required for Q biosynthesis.  相似文献   

2.
Coq3 O-methyltransferase carries out both O-methylation steps in coenzyme Q (ubiquinone) biosynthesis. The degree to which Coq3 O-methyltransferase activity and expression are dependent on the other seven COQ gene products has been investigated. A panel of yeast mutant strains harboring null mutations in each of the genes required for coenzyme Q biosynthesis (COQ1-COQ8) have been prepared. Mitochondria have been isolated from each member of the yeast coq mutant collection, from the wild-type parental strains and from respiratory deficient mutants harboring deletions in ATP2 or COR1 genes. These latter strains constitute Q-replete, respiratory deficient controls. Each of these mitochondrial preparations has been analyzed for COQ3-encoded O-methyltransferase activity and steady state levels of Coq3 polypeptide. The findings indicate that the presence of the other COQ gene products is required to observe normal levels of O-methyltransferase activity and the Coq3 polypeptide. However, COQ3 steady state RNA levels are not decreased in any of the coq mutants, relative to either wild-type or respiratory deficient control strains, suggesting either a decreased rate of translation or a decreased stability of the Coq3 polypeptide. These data are consistent with the involvement of the Coq polypeptides (or the Q-intermediates formed by the Coq polypeptides) in a multi-subunit complex. It is our hypothesis that a deficiency in any one of the COQ gene products results in a defective complex in which the Coq3 polypeptide is rendered unstable.  相似文献   

3.
Coenzyme Q (Q) is a redox active lipid essential for aerobic respiration in eukaryotes. In Saccharomyces cerevisiae at least eight mitochondrial polypeptides, designated Coq1-Coq8, are required for Q biosynthesis. Here we present physical evidence for a coenzyme Q-biosynthetic polypeptide complex in isolated mitochondria. Separation of digitonin-solubilized mitochondrial extracts in one- and two-dimensional Blue Native PAGE analyses shows that Coq3 and Coq4 polypeptides co-migrate as high molecular mass complexes. Similarly, gel filtration chromatography shows that Coq1p, Coq3p, Coq4p, Coq5p, and Coq6p elute in fractions higher than expected for their respective subunit molecular masses. Coq3p, Coq4p, and Coq6p coelute with an apparent molecular mass exceeding 700 kDa. Coq3 O-methyltransferase activity, a surrogate for Q biosynthesis and complex activity, also elutes at this high molecular mass. We have determined the quinone content in lipid extracts of gel filtration fractions by liquid chromatography-tandem mass spectrometry and find that demethoxy-Q(6) is enriched in fractions with Coq3p. Co-precipitation of biotinylated-Coq3 and Coq4 polypeptide from digitonin-solubilized mitochondrial extracts shows their physical association. This study identifies Coq3p and Coq4p as defining members of a Q-biosynthetic Coq polypeptide complex.  相似文献   

4.
The COQ3 gene in Saccharomyces cerevisiae encodes an O-methyltransferase required for two steps in the biosynthetic pathway of ubiquinone (coenzyme Q, or Q). This enzyme methylates an early Q intermediate, 3,4-dihydroxy-5-polyprenylbenzoic acid, as well as the final intermediate in the pathway, converting demethyl-Q to Q. This enzyme is also capable of methylating the distinct prokaryotic early intermediate 2-hydroxy-6-polyprenyl phenol. A full-length cDNA encoding the human homologue of COQ3 was isolated from a human heart cDNA library by sequence homology to rat Coq3. The clone contained a 933-base pair open reading frame that encoded a polypeptide with a great deal of sequence identity to a variety of eukaryotic and prokaryotic Coq3 homologues. In the region between amino acids 89 and 255 in the human sequence, the rat and human homologues are 87% identical, whereas human and yeast are 35% identical. When expressed in multicopy, the human construct rescued the growth of a yeast coq3 null mutant on a nonfermentable carbon source and restored coenzyme Q biosynthesis, although at lower levels than that of wild type yeast. In vitro methyltransferase assays using farnesylated analogues of intermediates in the coenzyme Q biosynthetic pathway as substrates showed that the human enzyme is active with all three substrates tested.  相似文献   

5.
Coenzyme Q (Q) is a lipid that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. There are eight complementation groups of Q-deficient Saccharomyces cerevisiae mutants, designated coq1-coq8. Here we have isolated the COQ6 gene by functional complementation and, in contrast to a previous report, find it is not an essential gene. coq6 mutants are unable to grow on nonfermentable carbon sources and do not synthesize Q but instead accumulate the Q biosynthetic intermediate 3-hexaprenyl-4-hydroxybenzoic acid. The Coq6 polypeptide is imported into the mitochondria in a membrane potential-dependent manner. Coq6p is a peripheral membrane protein that localizes to the matrix side of the inner mitochondrial membrane. Based on sequence homology to known proteins, we suggest that COQ6 encodes a flavin-dependent monooxygenase required for one or more steps in Q biosynthesis.  相似文献   

6.
Coenzyme Q (ubiquinone or Q) functions in the respiratory electron transport chain and serves as a lipophilic antioxidant. In the budding yeast Saccharomyces cerevisiae, Q biosynthesis requires nine Coq proteins (Coq1-Coq9). Previous work suggests both an enzymatic activity and a structural role for the yeast Coq7 protein. To define the functional roles of yeast Coq7p we test whether Escherichia coli ubiF can functionally substitute for yeast COQ7. The ubiF gene encodes a flavin-dependent monooxygenase that shares no homology to the Coq7 protein and is required for the final monooxygenase step of Q biosynthesis in E. coli. The ubiF gene expressed at low copy restores growth of a coq7 point mutant (E194K) on medium containing a non-fermentable carbon source, but fails to rescue a coq7 null mutant. However, expression of ubiF from a multicopy vector restores growth and Q synthesis for both mutants, although with a higher efficiency in the point mutant. We attribute the more efficient rescue of the coq7 point mutant to higher steady state levels of the Coq3, Coq4, and Coq6 proteins and to the presence of demethoxyubiquinone, the substrate of UbiF. Coq7p co-migrates with the Coq3 and Coq4 polypeptides as a high molecular mass complex. Here we show that addition of Q to the growth media also stabilizes the Coq3 and Coq4 polypeptides in the coq7 null mutant. The data suggest that Coq7p, and the lipid quinones (demethoxyubiquinone and Q) function to stabilize other Coq polypeptides.  相似文献   

7.
Coenzyme Q (Q) is a redox active lipid that is an essential component of the electron transport chain. Here, we show that steady state levels of Coq3, Coq4, Coq6, Coq7 and Coq9 polypeptides in yeast mitochondria are dependent on the expression of each of the other COQ genes. Submitochondrial localization studies indicate Coq9p is a peripheral membrane protein on the matrix side of the mitochondrial inner membrane. To investigate whether Coq9p is a component of a complex of Q-biosynthetic proteins, the native molecular mass of Coq9p was determined by Blue Native-PAGE. Coq9p was found to co-migrate with Coq3p and Coq4p at a molecular mass of approximately 1 MDa. A direct physical interaction was shown by the immunoprecipitation of HA-tagged Coq9 polypeptide with Coq4p, Coq5p, Coq6p and Coq7p. These findings, together with other work identifying Coq3p and Coq4p interactions, identify at least six Coq polypeptides in a multi-subunit Q biosynthetic complex.  相似文献   

8.
Coenzyme Q is a redox active lipid essential for aerobic respiration. The Coq4 polypeptide is required for Q biosynthesis and growth on non-fermentable carbon sources, however its exact function in this pathway is not known. Here we probe the functional roles of Coq4p in a yeast Q biosynthetic polypeptide complex. A yeast coq4-1 mutant harboring an E226K substitution is unable to grow on nonfermentable carbon sources. The coq4-1 yeast mutant retains significant Coq3p O-methyltransferase activity, and mitochondria isolated from coq4-1 and coq4-2 (E121K) yeast point mutants contain normal steady state levels of Coq polypeptides, unlike the decreased levels of Coq polypeptides generally found in strains harboring coq gene deletions. Digitonin-solubilized mitochondrial extracts prepared from yeast coq4 point mutants show that Coq3p and Coq4 polypeptides no longer co-migrate as high molecular mass complexes by one- and two-dimensional Blue Native-PAGE. Similarly, gel filtration chromatography confirms that O-methyltransferase activity, Coq3p, Coq4p, and Coq7p migration are disorganized in the coq4-1 mutant mitochondria. The data suggest that Coq4p plays an essential role in organizing a Coq enzyme complex required for Q biosynthesis.  相似文献   

9.
Coenzyme Q (Q) is a lipid that functions as an electron carrier in the mitochondrial respiratory chain in eukaryotes. There are eight complementation groups of Q-deficient Saccharomyces cerevisiae mutants designated coq1-coq8. Here we provide genetic evidence that several of the Coq polypeptides interact with one another. Deletions in any of the COQ genes affect the steady-state expression of Coq3p, Coq4p, and Coq6p. Antibodies that recognize Coq1p, a hexaprenyl diphosphate synthase, were generated and used to determine that Coq1p is peripherally associated with the inner membrane on the matrix side. Yeast Deltacoq1 mutants harboring diverse Coq1 orthologs from prokaryotic species produce distinct sizes of polyprenyl diphosphate and hence distinct isoforms of Q including Q(7), Q(8), Q(9), or Q(10) (Okada, K., Kainou, T., Matsuda, H., and Kawamukai, M. (1998) FEBS Lett. 431, 241-244). We find that steady-state levels of Coq3p, Coq4p, and Coq6p are rescued in some cases to near wild-type levels by the presence of these diverse Coq1 orthologs in the Deltacoq1 mutant. These data suggest that the lipid product of Coq1p or a Q-intermediate derived from polyprenyl diphosphate is involved in stabilizing the Coq3, Coq4, and Coq6 polypeptides.  相似文献   

10.
Coenzyme Q (ubiquinone or Q) is a lipid electron and proton carrier in the electron transport chain. In yeast Saccharomyces cerevisiae eleven genes, designated COQ1 through COQ9, YAH1 and ARH1, have been identified as being required for Q biosynthesis. One of these genes, COQ8 (ABC1), encodes an atypical protein kinase, containing six (I, II, III, VIB, VII, and VIII) of the twelve motifs characteristically present in canonical protein kinases. Here we characterize seven distinct Q-less coq8 yeast mutants and show that unlike the coq8 null mutant, each maintained normal steady-state levels of the Coq8 polypeptide. The phosphorylation states of Coq polypeptides were determined with two-dimensional gel analyses. Coq3p, Coq5p, and Coq7p were phosphorylated in a Coq8p-dependent manner. Expression of a human homolog of Coq8p, ADCK3(CABC1) bearing an amino-terminal yeast mitochondrial leader sequence, rescued growth of yeast coq8 mutants on medium containing a nonfermentable carbon source and partially restored biosynthesis of Q(6). The phosphorylation state of several of the yeast Coq polypeptides was also rescued, indicating a profound conservation of yeast Coq8p and human ADCK3 protein kinase function in Q biosynthesis.  相似文献   

11.
The COQ4 gene coding for a component of the coenzyme Q biosynthetic pathway in the yeast Saccharomyces cerevisiae was cloned by a functional complementation of a Q-deficient mutant strain. Yeast coq4 mutant strains harboring the COQ4 gene on either single- or multicopy plasmids acquired the ability to grow on media containing a nonfermentable carbon source, synthesize Q(6), and respire. COQ4 encodes a polypeptide containing 335 amino acids with a calculated molecular mass of 38.6 kDa. By Western blot analysis with a specific antiserum, Coq4p was shown to peripherally associate with the matrix face of the mitochondrial inner membrane. The putative mitochondrial-targeting sequence present at the amino-terminus of the polypeptide efficiently imported it to mitochondria in a membrane-potential-dependent manner. Steady-state levels of COQ4 mRNA were increased during growth on glycerol-containing medium, in accordance with a function in Q biosynthesis. The function of Coq4p is unknown, although its presence is required to maintain a steady-state level of Coq7p, another component of the Q biosynthetic pathway. The results presented here, along with those available from literature, are discussed in light of the recently proposed existence of a multisubunit complex functioning in Q biosynthesis (A. Y. Hsu, T. Q. Do, P. T. Lee, and C. F. Clarke, 2000, Biochim. Biophys. Acta 1484, 287-297).  相似文献   

12.
Coq5 catalyzes the only C-methylation involved in the biosynthesis of coenzyme Q (Q or ubiquinone) in humans and yeast Saccharomyces cerevisiae. As one of eleven polypeptides required for Q production in yeast, Coq5 has also been shown to assemble with the multi-subunit complex termed the CoQ-synthome. In humans, mutations in several COQ genes cause primary Q deficiency, and a decrease in Q biosynthesis is associated with mitochondrial, cardiovascular, kidney and neurodegenerative diseases. In this study, we characterize the human COQ5 polypeptide and examine its complementation of yeast coq5 point and null mutants. We show that human COQ5 RNA is expressed in all tissues and that the COQ5 polypeptide is associated with the mitochondrial inner membrane on the matrix side. Previous work in yeast has shown that point mutations within or adjacent to conserved COQ5 methyltransferase motifs result in a loss of Coq5 function but not Coq5 steady state levels. Here, we show that stabilization of the CoQ-synthome within coq5 point mutants or by over-expression of COQ8 in coq5 null mutants permits the human COQ5 homolog to partially restore coq5 mutant growth on respiratory media and Q6 content. Immunoblotting against the human COQ5 polypeptide in isolated yeast mitochondria shows that the human Coq5 polypeptide migrates in two-dimensional blue-native/SDS-PAGE at the same high molecular mass as other yeast Coq proteins. The results presented suggest that human and Escherichia coli Coq5 homologs expressed in yeast retain C-methyltransferase activity but are capable of rescuing the coq5 yeast mutants only when the CoQ-synthome is assembled.  相似文献   

13.
Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation–reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes.  相似文献   

14.
Coenzyme Q (CoQ, ubiquinone) is a central electron carrier in mitochondrial respiration. CoQ is synthesized through multiple steps involving a number of different enzymes. The prevailing view that the CoQ used in respiration exists as a free pool that diffuses throughout the mitochondrial inner membrane bilayer has recently been challenged. In the yeast Saccharomyces cerevisiae, deletion of the gene encoding Coq10p results in respiration deficiency without inhibiting the synthesis of CoQ, suggesting that the Coq10 protein is critical for the delivery of CoQ to the site(s) of respiration. The precise mechanism by which this is achieved remains unknown at present. We have identified a Plasmodium orthologue of Coq10 (PfCoq10), which is predominantly expressed in trophozoite-stage parasites, and localizes to the parasite mitochondrion. Expression of PfCoq10 in the S. cerevisiae coq10 deletion strain restored the capability of the yeast to grow on respiratory substrates, suggesting a remarkable functional conservation of this protein over a vast evolutionary distance, and despite a relatively low level of amino acid sequence identity. As the antimalarial drug atovaquone acts as a competitive inhibitor of CoQ, we assessed whether over-expression of PfCoq10 altered the atovaquone sensitivity in parasites and in yeast mitochondria, but found no alteration of its activity.  相似文献   

15.
Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q(6) biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q(6) biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q(6). Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q(6) biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway.  相似文献   

16.
CoQ(6) (coenzyme Q(6)) biosynthesis in yeast is a well-regulated process that requires the final conversion of the late intermediate DMQ(6) (demethoxy-CoQ(6)) into CoQ(6) in order to support respiratory metabolism in yeast. The gene CAT5/COQ7 encodes the Cat5/Coq7 protein that catalyses the hydroxylation step of DMQ(6) conversion into CoQ(6). In the present study, we demonstrated that yeast Coq7 recombinant protein purified in bacteria can be phosphorylated in vitro using commercial PKA (protein kinase A) or PKC (protein kinase C) at the predicted amino acids Ser(20), Ser(28) and Thr(32). The total absence of phosphorylation in a Coq7p version containing alanine instead of these phospho-amino acids, the high extent of phosphorylation produced and the saturated conditions maintained in the phosphorylation assay indicate that probably no other putative amino acids are phosphorylated in Coq7p. Results from in vitro assays have been corroborated using phosphorylation assays performed in purified mitochondria without external or commercial kinases. Coq7p remains phosphorylated in fermentative conditions and becomes dephosphorylated when respiratory metabolism is induced. The substitution of phosphorylated residues to alanine dramatically increases CoQ(6) levels (256%). Conversely, substitution with negatively charged residues decreases CoQ(6) content (57%). These modifications produced in Coq7p also alter the ratio between DMQ(6) and CoQ(6) itself, indicating that the Coq7p phosphorylation state is a regulatory mechanism for CoQ(6) synthesis.  相似文献   

17.
Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1–COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11.  相似文献   

18.
Components of some protein complexes present in the inner membrane of mitochondria are encoded in both nuclear and mitochondrial genomes, and correct sorting and assembly of these proteins is necessary for proper respiratory function. Recent studies in yeast suggest that Oxa1p, a protein conserved between prokaryotes and eukaryotes, is an essential factor for protein sorting and assembly into membranes. We previously identified AtOXA1, an Arabidopsis homologue of OXA1 by functional complementation of a yeast oxa1- mutant. In this study, we investigated the genomic organization of AtOXA1 and localization of the AtOXA1 protein. Characterization of the AtOXA1 genomic region indicated that the gene consists of 10 exons and is located on chromosome V. A database search also revealed another gene coding for a putative protein homologous to AtOXA1 on chromosome II. Transient expression of a green fluorescent protein (GFP) fusion in suspension-cultured tobacco cells showed that AtOXA1 is targeted into mitochondria by its N-terminal presequence. Antibodies raised against AtOXA1 recognized a 38-kDa intrinsic protein of the inner mitochondrial membrane. Thus, localization of AtOXA1 in the mitochondrial inner membrane, together with our previous complementation experiment in yeast, suggested that it is a functional homologue of Oxa1p.  相似文献   

19.
Coenzyme Q is a redox-active lipid that functions as an electron carrier in the mitochondrial respiratory chain. Q-biosynthesis in Saccharomyces cerevisiae requires at least nine proteins (Coq1p-Coq9p). The molecular function of Coq8p is still unknown; however, lack of Q and the concomitant accumulation of the intermediate 3-hexaprenyl-4-hydroxybenzoic acid in the absence of Coq8p suggest an essential role in Q-biosynthesis. Localization studies identify Coq8p as a soluble mitochondrial protein, with characteristics of a protein of the matrix or associated with the inner mitochondrial membrane. Coq8p forms homomeric structure(s) as revealed by two-hybrid analysis and tandem affinity purification. Two-dimensional (2D)-Blue Native/sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis suggests that Coq8p - together with Coq2p and Coq10p - is predominantly associated with a complex of about 500 kDa, whereas Coq3p, Coq5p and Coq9p are mainly organized in a 1.3 MDa Q-biosynthesis complex that is not associated with the complex III and IV supracomplexes of the respiratory chain. Loss of Coq8p is accompanied by destabilization of Coq3p, but not of Coq9p from the 1.3 MDa Q-biosynthesis complex. This effect cannot be reversed by Q(6) supplementation. The detection of Coq3p isoforms by 2D-isoelectric focusing is in line with the proposed function of Coq8p as a kinase, with Coq3p as a target.  相似文献   

20.
Coq6 is an enzyme involved in the biosynthesis of coenzyme Q, a polyisoprenylated benzoquinone lipid essential to the function of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, this putative flavin-dependent monooxygenase is proposed to hydroxylate the benzene ring of coenzyme Q (ubiquinone) precursor at position C5. We show here through biochemical studies that Coq6 is a flavoprotein using FAD as a cofactor. Homology models of the Coq6-FAD complex are constructed and studied through molecular dynamics and substrate docking calculations of 3-hexaprenyl-4-hydroxyphenol (4-HP6), a bulky hydrophobic model substrate. We identify a putative access channel for Coq6 in a wild type model and propose in silico mutations positioned at its entrance capable of partially (G248R and L382E single mutations) or completely (a G248R-L382E double-mutation) blocking access to the channel for the substrate. Further in vivo assays support the computational predictions, thus explaining the decreased activities or inactivation of the mutated enzymes. This work provides the first detailed structural information of an important and highly conserved enzyme of ubiquinone biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号