首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispersed neurons from embryonic chicken sympathetic ganglia were innervated in vitro by explants of spinal cord containing the autonomic preganglionic nucleus or somatic motor nucleus. The maturation of postsynaptic acetylcholine (ACh) sensitivity and synaptic activity was evaluated from ACh and synaptically evoked currents in voltage-clamped neurons at several stages of innervation. All innervated cells are more sensitive to ACh than uninnervated neurons regardless of the source of cholinergic input. Similarly, medium conditioned by either dorsal or ventral explants mimics innervation by enhancing neuronal ACh sensitivity. This increase is due to changes in the rate of appearance of ACh receptors on the cell surface. There are also several changes in the nature of synaptic transmission with development in vitro, including an increased frequency of synaptic events and the appearance of larger amplitude synaptic currents. In addition, the mean amplitude of the unit synaptic current mode increases, as predicted from the observed changes in postsynaptic sensitivity. Although spontaneous synaptic current amplitude histograms with multimodal distributions are seen at all stages of development, histograms from early synapses are typically unimodal. Changes in the synaptic currents and ACh sensitivity between 1 and 4 days of innervation were paralleled by an increase in the number of synaptic events that evoked suprathreshold activity in the postsynaptic neurons. The early pre- and postsynaptic differentiation described here for interneuronal synapses formed in vitro may be responsible for increased efficacy of synaptic transmission during development in vivo.  相似文献   

2.
It is known that myoblast fusion fails to occur in cultures containing EGTA (a calcium-specific chelator) but occurs very rapidly after EGTA medium is replaced with standard high-calcium medium. On the basis of a careful analysis of the time course of fusion in cultures switched from EGTA to standard medium, it is proposed that this method of synchronization be used routinely in studies of the timing of different processes during in vitro myogenesis. The kinetics of accumulation of total enzyme activity for creatine kinase and fructose diphosphate aldolase indicate that the increases characteristic of terminal muscle differentiation begin prior to the experimentally imposed onset of fusion in EGTA-synchronized cultures. Additionally, the accumulation of M-creatine kinase subunits, also typical for muscle differentiation, is shown by microcomplement fixation to begin before the switch from EGTA to standard medium. Creatine kinase isoenzyme patterns also show that the transition from B- to M-subunit-containing creatine kinases occurs in EGTA cultures not switched to standard medium. Like EGTA, 5-bromodeoxyuridine (BrdUrd) reversibly prevents myoblast fusion. By adding EGTA and BrdUrd in different sequences to muscle cell cultures, it is shown that they act at different stages in the course of in vitro myogenesis. Cells cultured in EGTA from 23 to 69 hr after plating fused very rapidly when switched to medium containing BrdUrd. In the reverse experiment, in which BrdUrd preceded EGTA, no fusion occurred. Parallel experiments with 5-fluorodeoxyuridine suggest that cell division is necessary to reverse the inhibitory effect of BrdUrd, but not that of EGTA; this is consistent with the observed kinetics of fusion after switching to standard medium. These data strongly support a model of myogenesis in vitro in which two processes (one BrdUrd-sensitive, the other EGTA-sensitive) occur sequentially. In the first process, myogenic cells give rise to cells capable of producing molecules necessary for (terminal) skeletal muscle differentiation, including both those required for cell fusion and specific isoenzymes. The second process, fusion itself, can occur in the presence of BrdUrd or in the absence of cell division.  相似文献   

3.
This paper describes the physiological and pharmacological parameters of the response of mature muscle fibers that develop from myoblasts in vitro to iontophoretically applied acetylcholine (ACh) and the distribution of ACh sensitivity over fibers innervated in vitro by spinal cord cells and uninnervated (control) fibers. Peaks of sensitivity were detected near nerve terminals on functionally innervated fibers, but the “extrasynaptic” chemosensitivity remained high. The distribution of chemosensitivity over uninnervated fibers is not uniform: peaks or “hot spots” were detected over most fibers. Autoradiography of cultures exposed to 125I-α-bungarotoxin is consistent with the uneven distribution detected by iontophoresis. Sensitivity peaks were usually located in the immediate vicinity of obvious muscle nuclei and conversely the membrane near most nuclei was more sensitive than that over other regions along the same cell. The relation between innervation and distribution of ACh sensitivity is discussed.  相似文献   

4.
An electrophysiological monitoring strategy involving iontophoretic application of acetylcholine and intracellular recording has been employed in an investigation of the time course of cell fusion during myogenesis in vitro. Pairs of closely apposed, acetylcholine-sensitive rat or chick myogenic cells were continuously monitored. The onset of high-efficiency electrical coupling between members of such pairs corresponded to the moment at which cytoplasmic continuity was established. Ultrastructural analysis of the serial section record of two rat myotubes, fixed 2–3 min after fusion began, demonstrated the rapid disappearance of surface membranes in the fusion area at an average rate > 1 μm2 of membrane per second. Ten pairs of acetylcholine-sensitive cells were also observed to form lower-efficiency electrical connections. Such cells were not fused but were associated via specialized close membrane appositions resembling gap junctions. These membrane appositions apparently persist through the early events of cell fusion, for their remnants were found in recently fused cells. Possible roles of electrical coupling and of these close junctions in the fusion process are considered.  相似文献   

5.
Molecules involved in WNT/β-catenin signaling show specific spatiotemporal expression and play vital roles in myogenesis; however, it is still largely unknown how WNT/β-catenin signaling regulates each step of myogenesis. Here, we show that WNT/β-catenin signaling can control diverse biological processes of myogenesis by regulating step-specific molecules. In order to identify the temporally specific roles of WNT/β-catenin signaling molecules in muscle development and homeostasis, we used in vitro culture systems for both primary mouse myoblasts and C2C12 cells, which can differentiate into myofibers. We found that a blockade of WNT/β-catenin signaling in the proliferating cells decreases proliferation activity, but does not induce cell death, through the regulation of genes cyclin A2 (Ccna2) and cell division cycle 25C (Cdc25c). During muscle differentiation, the inhibition of WNT/β-catenin signaling blocks myoblast fusion through the inhibition of the Fermitin family homolog 2 (Fermt2) gene. Blocking WNT/β-catenin signaling in the well-differentiated myofibers results in the failure of maintenance of their structure by disruption of cadherin/β-catenin/actin complex formation, which plays a crucial role in connecting a myofiber''s cytoskeleton to the surrounding extracellular matrix. Thus, our results indicate that WNT/β-catenin signaling can regulate multiple steps of myogenesis, including cell proliferation, myoblast fusion, and homeostasis, by targeting step-specific molecules.  相似文献   

6.
Muscle development in vitro following X irradiation   总被引:3,自引:0,他引:3  
Myogenic cells obtained from 12-day-old embryonic chicken hind limb and breast muscle were exposed to 5000 rads of X irradiation. Although 10% of the initial cell dissociates were killed by irradiation, the remaining cells were comparable to controls in plating efficiency and light microscopic morphology. Moreover, there was no increase or loss of cells for at least 72 hr in vitro when plated at a density of 2 × 106 cells/60-mm plate. It was found that muscle cell fusion after irradiation proceeded at the same rate and to the same relative extent as in control cultures. Myotubes developed normally; cross-striations were prominent by 5 to 7 days of culture and the cells maintained a well-differentiated state for periods of at least 3 weeks in vitro. In control cultures continuously labeled with 1 μCi/ml of [3H]TdR, 75% of the nuclei within myotubes were heavily labeled by 118 hr; less than 15% of the nuclei within syncytia of irradiated cultures were labeled. Quantitative microphotometry of Feulgen-stained cultures demonstrated that all nuclei within control and irradiated myotubes contained the 2C complement of DNA. Similar experiments conducted with cells released from limbs and breasts of 10-day-old embryos revealed lower absolute levels of cytoplasmic fusion in both control and irradiated samples, however, there was slightly more cell death after exposure to X rays in 10-day-old than 12-day-old material. Nevertheless, considerable cell fusion occurred in irradiated limb and breast cell cultures, consistent with the conclusion that the commitment to myogenesis of prefusion myoblasts is extremely stable even in the face of massive ionizing radiation and that neither cell division nor replication of DNA is an obligatory prerequisite for the in vitro fusion and subsequent differentiation of skeletal muscle obtained from 10- and 12-day-old chick embryos.  相似文献   

7.
Skeletal muscle development and regeneration requires the fusion of myoblasts into multinucleated myotubes. Because the enzymatic proteolysis of a hyaluronan and versican-rich matrix by ADAMTS versicanases is required for developmental morphogenesis, we hypothesized that the clearance of versican may facilitate the fusion of myoblasts during myogenesis. Here, we used transgenic mice and an in vitro model of myoblast fusion, C2C12 cells, to determine a potential role for ADAMTS versicanases. Versican processing was observed during in vivo myogenesis at the time when myoblasts were fusing to form multinucleated myotubes. Relevant ADAMTS genes, chief among them Adamts5 and Adamts15, were expressed both in developing embryonic muscle and differentiating C2C12 cells. Reducing the levels of Adamts5 mRNA in vitro impaired myoblast fusion, which could be rescued with catalytically active but not the inactive forms of ADAMTS5 or ADAMTS15. The addition of inactive ADAMTS5, ADAMTS15, or full-length V1 versican effectively impaired myoblast fusion. Finally, the expansion of a hyaluronan and versican-rich matrix was observed upon reducing the levels of Adamts5 mRNA in myoblasts. These data indicate that these ADAMTS proteinases contribute to the formation of multinucleated myotubes such as is necessary for both skeletal muscle development and during regeneration, by remodeling a versican-rich pericellular matrix of myoblasts. Our study identifies a possible pathway to target for the improvement of myogenesis in a plethora of diseases including cancer cachexia, sarcopenia, and muscular dystrophy.  相似文献   

8.
9.
During myogenesis in vitro the actin-binding protein filamin is present in myoblasts and early fused cells and is associated with α-actinin-containing filament bundles, as judged by double immunofluorescence using antibodies specific for these two proteins. Approximately one day after cell fusion, yet before the development of a-actinin-containing Z line striations, filamin disappears from the cells. Later in myogenesis, several days after the appearance of α-actinin-containing Z line striations, filamin reappears and accumulates in the cells. Double immunofluorescence with antibodies to filamin and vimentin (or desmin) reveals that the newly appearing filamin localizes now to the myofibril Z line and is visible there shortly before vimentin or desmin becomes associated with the Z line. Immunofluorescent localization of filamin in isolated chicken skeletal myofibrils and Z disc sheets indicates that filamin has the same distribution as desmin and vimentin; it surrounds each myofibril Z disc and forms honeycomb-like networks within each Z plane of the muscle fiber. Filamin may thus be involved in the transition of desmin and vimentin to the Z disc. Analysis of whole-cell extracts by SDS-polyacrylamide gel electrophoresis and by immunoautoradiography shows that filamin is present in myoblasts and in myotubes early after cell fusion. Concomitant with the absence of filamin fluorescence during the subsequent few days of myogenesis, the quantity of filamin is markedly reduced. During this time, metabolic pulse-labeling with 35S-methionine reveals that the synthetic rate of filamin is also markedly reduced. As filamin fluorescence appears at the Z line, the quantity of filamin and its synthetic rate both increase. The removal of filamin from the cells suggests that filamin either may not be required, or may actually interfere with a necessary process, during the early stages of sarcomere morphogenesis. These results also indicate that the periphery of the Z disc is assembled in at least two distinct steps during myogenesis.  相似文献   

10.
Myosin synthesis by fusion-arrested chick embryo myoblasts in cell culture.   总被引:1,自引:0,他引:1  
The synthesis and accumulation of myosin was studied in subcultures of fusion-blocked, postmitotic embryonic chicken myogenic cells. Electron micrographs and fluorescent microscopy with antimyosin revealed that most, if not all, of these cells contain myosin. It was also found that these cells are capable of accumulating myosin at rates comparable to fused cells. Incipient T-tubule formation was also present in some of the blocked cells. It is concluded that cell fusion is not a prerequisite for myosin synthesis and accumulation or T-tubule formation during myogenesis in vitro.  相似文献   

11.
Spontaneous mitotic recombination in the left arm of chromosome 3 was examined in both unirradiated control flies and sibs irradiated early in development by determining the sizes and frequencies of multiple-wing-hair (mwh) clones in the wing blade of heterozygous mwh/+ flies. Approximately 16% of the spontaneous mwh clones arise from events generating cells with normal division rates. The remaining 84% result from events generating cells with an average cell division rate one-third that of the surrounding cells; these are thought to result from events that generate aneuploid cells. Such clones probably arise from a failure correctly to repair spontaneous DNA damage. The frequency of spontaneous events late in development decreases significantly after irradiation as much as 150 hours earlier in development. The suppression of spontaneous events decreases with a longer period of time between irradiation and the final cell divisions in the wing blade. These results suggest the existence of a repair system for DNA damage in Drosophila that is induced by irradiation. The decrease in effect with time following irradiation could result from slow degradation or dilution by subsequent cell growth and division.  相似文献   

12.
During insect myogenesis, myoblasts are organized into a pre-pattern by specialized organizer cells. In the Drosophila embryo, these cells have been termed founder cells and play important roles in specifying muscle identity and in serving as targets for myoblast fusion. A group of adult muscles, the dorsal longitudinal (flight) muscles, DLMs, is patterned by persistent larval scaffolds; the second set, the dorso-ventral muscles, DVMs is patterned by mono-nucleate founder cells (FCs) that are much larger than the surrounding myoblasts. Both types of organizer cells express Dumbfounded, which is known to regulate fusion during embryonic myogenesis. The role of DVM founder cells as well as the DLM scaffolds was tested in genetic ablation studies using the UAS/Gal4 system of targeted transgene expression. In both cases, removal of organizer cells prior to fusion, causes formation of supernumerary fibers, suggesting that cells in the myoblast pool have the capacity to initiate fiber formation, which is normally inhibited by the organizers. In addition to the large DVM FCs, some (smaller) cells in the myoblast pool also express Dumbfounded. We propose that these cells are responsible for seeding supernumerary fibers, when DVM FCs are eliminated prior to fusion. When these cells are also eliminated, myogenesis fails to occur. In the second set of studies, targeted expression of constitutively active RasV12 also resulted in the appearance of supernumerary fibers. In this case, the original DVM FCs are present, suggesting alterations in cell fate. Taken together, these data suggest that DVM myoblasts are able to respond to cues other than the original founder cell, to initiate fusion and fiber formation. Thus, the role of the large DVM founder cells is to generate the correct number of fibers, but they are not required for fiber formation itself. We also present evidence that the DVM FCs may arise from the leg imaginal disc.  相似文献   

13.
14.
Satellite cells are a quiescent heterogenous population of mononuclear stem and progenitor cells which, once activated, differentiate into myotubes and facilitate skeletal muscle repair or growth. The Transforming Growth Factor-β (TGF-β) superfamily members are elevated post-injury and their importance in the regulation of myogenesis and wound healing has been demonstrated both in vitro and in vivo. Most studies suggest a negative role for TGF-β on satellite cell differentiation. However, none have compared the effect of these three isoforms on myogenesis in vitro. This is despite known isoform-specific effects of TGF-β1, -β2 and -β3 on wound repair in other tissues. In the current study we compared the effect of TGF-β1, -β2 and -β3 on proliferation and differentiation of the C2C12 myoblast cell-line. We found that, irrespective of the isoform, TGF-β increased proliferation of C2C12 cells by changing the cellular localisation of PCNA to promote cell division and prevent cell cycle exit. Concomitantly, TGF-β1, -β2 and -β3 delayed myogenic commitment by increasing MyoD degradation and decreasing myogenin expression. Terminal differentiation, as measured by a decrease in myosin heavy chain (MHC) expression, was also delayed. These results demonstrate that TGF-β promotes proliferation and delays differentiation of C2C12 myoblasts in an isoform-independent manner.  相似文献   

15.
During terminal differentiation of skeletal myoblasts, cells fuse to form postmitotic multinucleated myotubes that cannot reinitiate DNA synthesis. Here we investigated the temporal relationships among these events during in vitro differentiation of C2C12 myoblasts. Cells expressing myogenin, a marker for the entry of myoblasts into the differentiation pathway, were detected first during myogenesis, followed by the appearance of mononucleated cells expressing both myogenin and the cell cycle inhibitor p21. Although expression of both proteins was sustained in mitogen-restimulated myocytes, 5- bromodeoxyuridine incorporation experiments in serum-starved cultures revealed that myogenin-positive cells remained capable of replicating DNA. In contrast, subsequent expression of p21 in differentiating myoblasts correlated with the establishment of the postmitotic state. Later during myogenesis, postmitotic (p21-positive) mononucleated myoblasts activated the expression of the muscle structural protein myosin heavy chain, and then fused to form multinucleated myotubes. Thus, despite the asynchrony in the commitment to differentiation, skeletal myogenesis is a highly ordered process of temporally separable events that begins with myogenin expression, followed by p21 induction and cell cycle arrest, then phenotypic differentiation, and finally, cell fusion.  相似文献   

16.
Synchronized myogenic cell cultures have been used to demonstrate differential sensitivity to BUdR during segments of the S period. Synchronization of the cells was achieved by two methods. First, cells were initiated in medium containing FUdR, an inhibitor of DNA synthesis. Following FUdR blockade reversal with TdR after 19 hr in vitro, the synchronized cells were allowed to replicate their DNA with BUdR for periods corresponding to early and late S. Determinations of percentage labeled cells during synchronization with FUdR indicate that about 90% of the cycling population of cells accumulates at the G1/S interface of the cell-cycle and that the duration of the S period following blockade reversal with TdR is not altered. Since BUdR is pulsed to these cultures immediately after the point of synchronization, a high degree of synchrony is obtained. In the second method of synchrony, cohorts of cells which had been in G2, late S, or early S during a BUdR pulse were collected in metaphase arrest with Colcemid and selectively removed from the cultures. With the mitotic selection method the point of synchronization occurred several hours after the BUdR pulse. In both methods the cells were allowed to resume myogenesis and scored for percentage fused nuclei after approx 50 hr in vitro. With both methods of synchrony, BUdR incorporation into early replicating DNA results in a striking decline in myoblast fusion, whereas incorporation into late replicating DNA is without effect. The results cannot be attributed to a disproportionate uptake of nucleotide during early S. Further fractionation of the 4-hr S phase into 1-hr periods indicates that the BUdR sensitive target is replicated during the second hr of DNA synthesis.  相似文献   

17.
Skeletal myoblast fusion in vitro requires the expression of connexin43 (Cx43) gap junction channels. However, gap junctions are rapidly downregulated after the initiation of myoblast fusion in vitro and in vivo. In this study we show that this downregulation is accomplished by two related microRNAs, miR-206 and miR-1, that inhibit the expression of Cx43 protein during myoblast differentiation without altering Cx43 mRNA levels. Cx43 mRNA contains two binding sites for miR-206/miR-1 in its 3′-untranslated region, both of which are required for efficient downregulation. While it has been demonstrated before that miR-1 is involved in myogenesis, in this work we show that miR-206 is also upregulated during perinatal skeletal muscle development in mice in vivo and that both miR-1 and miR-206 downregulate Cx43 expression during myoblast fusion in vitro. Proper development of singly innervated muscle fibers requires muscle contraction and NMJ terminal selection and it is hypothesized that prolonged electrical coupling via gap junctions may be detrimental to this process. This work details the mechanism by which initial downregulation of Cx43 occurs during myogenesis and highlights the tight control mechanisms that are utilized for the regulation of gap junctions during differentiation and development.  相似文献   

18.
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer of skeletal muscle. More than 70% of ARMS tumors carry balanced t(2;13) chromosomal translocation that leads to the production of two novel fusion genes, PAX3-FKHR and FKHR-PAX3. While the PAX3-FKHR gene has been intensely studied, the reciprocal FKHR-PAX3 gene has rarely been described. We report here the cloning and functional characterization of the FKHR-PAX3 gene as the first step towards a better understanding of its potential impact on ARMS biology. From RH30 ARMS cells, we detected and isolated three versions of FKHR-PAX3 cDNAs whose C-terminal sequences corresponded to PAX3c, PAX3d, and PAX3e isoforms. Unlike the nuclear-specific localization of PAX3-FKHR, the reciprocal FKHR-PAX3 proteins stayed predominantly in the cytoplasm. FKHR-PAX3 potently inhibited myogenesis in both non-transformed myoblast cells and ARMS cells. We showed that FKHR-PAX3 was not a classic oncogene but could act as a facilitator in oncogenic pathways by stabilizing PAX3-FKHR expression, enhancing cell proliferation, clonogenicity, anchorage-independent growth, and matrix adhesion in vitro, and accelerating the onset of tumor formation in xenograft mouse model in vivo. In addition to these pro-oncogenic behaviors, FKHR-PAX3 also negatively affected cell migration and invasion in vitro and lung metastasis in vivo. Taken together, these functional characteristics suggested that FKHR-PAX3 might have a critical role in the early stage of ARMS development.  相似文献   

19.
《Translational oncology》2020,13(6):100764
Anticancer drug efficacy varies because the delivery of drugs within tumors and tumor responses are heterogeneous; however, these features are often more homogenous in vitro. This difference makes it difficult to accurately determine drug efficacy. Therefore, it is important to use living tumor tissues in preclinical trials to observe the heterogeneity in drug distribution and cell characteristics in tumors. In the present study, to accurately evaluate the efficacy of an antibody-drug conjugate (ADC) containing a microtubule inhibitor, we established a cell line that expresses a fusion of end-binding protein 1 and enhanced green fluorescent protein that serves as a microtubule plus-end-tracking protein allowing the visualization of microtubule dynamics. This cell line was xenografted into mice to create a model of living tumor tissue. The tumor cells possessed a greater number of microtubules with plus-ends, a greater number of meandering microtubules, and a slower rate of microtubule polymerization than the in vitro cells. In tumor tissues treated with fluorescent dye-labeled ADCs, heterogeneity was observed in the delivery of the drug to tumor cells, and microtubule dynamics were inhibited in a concentration-dependent manner. Moreover, a difference in drug sensitivity was observed between in vitro cells and tumor cells; compared with in vitro cells, tumor cells were more sensitive to changes in the concentration of the ADC. This study is the first to simultaneously evaluate the delivery and intracellular efficacy of ADCs in living tumor tissue. Accurate evaluation of the efficacy of ADCs is important for the development of effective anticancer drugs.  相似文献   

20.
Microtubules (MTs) have been implicated to function in the change of cell shape and intracellular organization that occurs during myogenesis. However, the mechanism by which MTs are involved in these morphogenetic events is unclear. As a first step in elucidating the role of MTs in myogenesis, we have examined the accumulation and subcellular distribution of posttranslationally modified forms of tubulin in differentiating rat L6 muscle cells, using antibodies specific for tyrosinated (Tyr), detyrosinated (Glu), and acetylated (Ac) tubulin. Both Glu and Ac tubulin are components of stable MTs, whereas Tyr tubulin is the predominant constituent of dynamic MTs. In proliferating L6 myoblasts, as in other types of proliferating cells, the level of Glu tubulin was very low when compared with the level of Tyr tubulin. However, when we shifted proliferating L6 cells to differentiation media, we observed a rapid accumulation of Glu tubulin in cellular MTs. By immunofluorescence, the increase in Glu tubulin was first detected in MTs of prefusion myoblasts and was specifically localized to MTs that were associated with elongating portions of the cell. MTs in the multinucleated myotubes observed at later stages of differentiation maintained the elevated level of Glu tubulin that was observed in the prefusion myoblasts. When cells at early stages of differentiation (less than 1 d after switching the culture medium) were immunostained for Glu tubulin and the muscle-specific marker, muscle myosin, we found that the increase in Glu tubulin preceded the accumulation of muscle myosin. Thus, the elaboration of Glu MTs is one of the very early events in myogenesis. Ac tubulin also increased during L6 myogenesis; however, the increase in acetylation occurred later in myogenesis, after fusion had already occurred. Because detyrosination was temporally correlated with early events of myogenesis, we examined the mechanism responsible for the accumulation of Glu tubulin in the MTs of prefusion myoblasts. We found that an increase in the stability of L6 cell MTs occurred at the onset of differentiation, suggesting that the early increase in detyrosination that we observed is a manifestation of a decrease in MT dynamics in elongating myoblasts. We conclude that the establishment of an oriented array of microtubules heightened in its stability and its level of posttranslationally modified subunits may be involved in the subcellular remodeling that occurs during myogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号