首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparative study was made of the inhibition of ribulose-1,5-bisphosphatecarboxylase-oxygenase (Rubisco) amongst six cultivars of Glycinemax L. Merr., associated with synthesis of 2-carboxyarabinitol1-phosphate (CA1P) during darkness. Significantly lower meanvalues of dark inhibition of Rubisco were observed in soybeancv. Davis than in cvs Bragg, Cobb, Hardee, Gordon, and Kirby.The CA1P synthesis/degradation cycle during dark/light transitionsremained operational in cv. Bragg plants grown at low irradiance(40 µmol photons m–2 s–1). However, CA1P synthesisand degradation rates were slower in the dark (t0.5 = 240 versus25 min), and light (t0.5 = 20 versus 3.8 min) respectively,as compared to plants grown at higher irradiance (550 µmolphotons m–2 s–1). In addition, the activation stateof Rubisco in low-light-grown plants showed only a small declineafter a transition to darkness. We conclude that (a) cultivar-dependentvariation occurs amongst soybeans with respect to CAlP regulationof Rubisco, and (b) soybeans acclimated to low irradiance maydepend more on CA1P synthesis/degradation to regulate Rubisco,and less on changes in the enzyme activation state. Key words: Activation state, Glycine max, photosynthesis, Rubisco, 2-carboxyarabinitol 1-phosphate  相似文献   

2.
Limitation of photosynthesis and light activation of ribulose,1,5-bisphosphate carboxylase (RuBPCO) were examined in the 5thleaf of seedlings of red clover (Trifolium pratense L. cv. Renova)for 5 d following an increase in photosynthetic photon fluxdensity (PPFD) from 200 to 550µmol quanta m–2 s–1.Net photosynthesis and its stimulation at 2.0 kPa O2 initialactivity of rapidly extracted RuBPCO, standard activity of RuBPCOafter incubation of the extracts in the presence of CO2, Mg2+,and inorganic phosphate and contents of soluble protein, starch,soluble sugars, and various photosynthetic metabolites weredetermined. Photosynthesis decreased and starch content increased.No decrease in photosynthesis was found if, when PPFD was increased,all leaves except the investigated 5th leaf were removed, suggestingthat the decrease in photosynthesis was due to accumulated carbohydrates.The stimulation of photosynthesis at 2.0 kPa O2 did not decreaseand the ratio of the total foliar steady-state contents of triosephosphate to 3-phosphoglycerate increased suggesting that thedecrease in photosynthesis was not due to limiting inorganicphosphate in chloroplasts. Intercellular CO2 partial pressureand RuBP content were not decreased. Nevertheless, the ratioof photosynthesis to initial RuBPCO activity decreased, suggestingthat the catalysis per active RuBPCO site was decreased. Theincrease in PPFD in the growth cabinet and the PPFD at whichleaves were preconditioned for 1 h, affected not only initialactivity but also the standard activity of RuBPCO. The resultssuggest that a varying proportion of RuBPCO was bound to membranesand was contained in the insoluble fraction of the extracts.A comparison of photosynthesis with extracted RuBPCO activitysuggested that membrane bound RuBPCO did not contribute to photosyntheticCO2 fixation and that the binding and release to and from membranesmodulated actual RuBPCO activity in vivo. Key words: Photosynthesis, ribulose 1,5-bisphosphate carboxylase, starch  相似文献   

3.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

4.
A comparison of the activity and properties of the enzyme phosphoenolpyruvatecarboxylase (PEPC) was made for plants of Sedum telephium L.grown under low (70 µmol m–2 s–1) or high(500µmol m–2 s–1) PPFD and subjected to varyingdegrees of water stress. Under well-watered conditions onlyplants grown under high PPFD accumulated titratable acidityovernight and the extractable activity of PEPC was almost 2-foldhigher in these plants than in plants grown under low PPFD.Increasing drought stress resulted in a substantial increasein the activity of PEPC extracted both during the light anddark periods and a decrease in the sensitivity to inhibitionby malic acid. The magnitude of these changes was determinedby the severity and duration of drought and by light intensity.A comparison of the kinetic properties of PEPC from severelydroughted plants revealed that plants droughted under high PPFDhad a lower Km for PEP than plants under low PPFD. Additionof 2·0 mol m–3 malate resulted in an increase inthe Km for PEP, with plants draughted under low PPFD havinga significantly higher Km in the presence of malic acid comparedto those under high PPFD. Response to the activator glc-6-P,which lowered the Km for PEP, also varied between plants grownunder the two light regimes. Under well-watered conditions PEPCextracted from plants under high PPFD was more sensitive toactivation by glc-6-P than those under low PPFD. After the severedrought treatment, however, the Km for PEP in the presence ofglc-6-P was similar for enzyme extracted from plants grown underboth light regimes. Soluble sugars and starch were depletedovernight and were both possible sources of substrate for PEPC.With increasing drought, however, the depletion of starch relativeto soluble sugars increased under both light regimes. The propertiesof PEPC and the characteristics of carbohydrate accumulation/depletionare discussed in relation to the regulation of CAM in S. telephiumgrown under different light and watering regimes. Key words: PEP carboxylase, CAM, carbohydrates, Sedum telephium  相似文献   

5.
The activation of ribulose–1, 5-bisphosphate carb-oxylase/oxygenase(Rubisco, EC 4.1.1.39 [EC] ) from the floating angiosperm Spirodelapolyrhiza (L.) Schleid. (giant duckweed) grown at a photon irradianceof 200 or 400 mol photons m–2 s–1 was consistentlylow, in the range of 56–62%. Similarly low values wereobserved with four other emergent aquatic species growing underfull sun irradiance. Transference of Spirodela plants for short(minutes) or long (days) periods to the higher or lower irradianceincreased or decreased, respectively, the activation by onlyabout 15%. Activation was not greatly altered by exposure ofthe plants to full sun irradiance of >2000 mol photons m–2s–1 or CO2 concentrations in air of 0 and 1170 mol mor–1but darkness caused a slow decline to 20% activation. Transientoscillations were observed following a change in irradianceor CO2 concentration indicating that Rubisco was responsiveto environmental perturbations. The low Rubisco activation wasnot due to the tight binding of inhibitors such as carboxyarabinitol-1-phosphate.It is concluded that a substantial proportion of the Rubiscoprotein in these naturally-occurring species may not be usedfor CO2-fixation at any given moment. Key words: Rubisco  相似文献   

6.
HEUER  BRURIA; PLAUT  Z. 《Annals of botany》1981,48(3):261-268
The influence of salinity in the growing media on ribulose-1,5-bisphosphate (RuBP) carboxylase and on CO2 fixation by intactsugar beet (Beta vulgaris) leaves was investigated. RuBP carboxylase activity was mostly stimulated in young leavesafter exposure of plants for 1 week to 180 mM NaCl in the nutrientsolution. This stimulation was more effective at the higherNaHCO2 concentrations in the reaction medium. Salinity also enhanced CO2 fixation in intact leaves mostlyat rate-limiting light intensities. A 60 per cent stimulationin CO2 fixation rate was obtained by salinity under 450 µEm–2 s–1. At quantum flux densities of 150 µEm–2 s–1 (400–700 nm) this stimulation was280 per cent. Under high light intensities no stimulation bysalinity was found. In contrast, water stress achieved by directleaf desiccation or by polyethylene glycol inhibited enzymeactivity up to fourfold at –1.2 MPa. Beta vulgaris, sugar beet, ribulose-1, 5-bisphosphate carboxylase, salt stress, water stress, carbon dixoide fixation, salinity  相似文献   

7.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

8.
Effects of Nitrogen Nutrition on Photosynthesis in Cd-treated Sunflower Plants   总被引:10,自引:0,他引:10  
Increased nitrogen supply stimulates plant growth and photosynthesis.Since it was shown that heavy metals may cause deficienciesof essential nutrients in plants the potential reversal of cadmiumtoxicity by increased N nutrition was investigated. The effectson photosynthesis of low Cd (0, 0.5, 2 or 5 mmol m-3) combinedwith three N treatments (2, 7.5 or 10 mol m-3) were examinedin young sunflower plants. Chlorophyll fluorescence quenchingparameters were determined at ambient CO2and at 100 or 800 µmolquanta m-2 s-1. The vitality index (Rfd) decreased approx. three-timesin response to 5 mmol m-3Cd, at 2 and 10 mol m-3N. The maximumphotochemical efficiency of PSII reaction centres (Fv/ Fm) wasnot influenced by Cd or N treatment. The highest Cd concentrationdecreased quantum efficiency of PSII electron transport (II)by 30%, at 2 and 10 mol m-3N, mostly due to increased closureof PSII reaction centres (qP). Photosynthetic oxygen evolutionrates at saturating CO2were decreased in plants treated with5 mmol m-3Cd, at all N concentrations. The results indicatethat Cd treatment affected the ribulose-1,5-bisphosphate (RuBP)regeneration capacity of the Calvin cycle more than other processes.At the same time, the amounts of soluble and ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco) protein increased with Cd treatment.Decreased photosynthesis, but substantially increased Rubiscocontent, in sunflower leaves under Cd stress indicate that asignificant amount of Rubisco protein is not active in photosynthesisand could have another function. It is shown that optimal nitrogennutrition decreases the inhibitory effects of Cd in young sunflowerplants. Copyright 2000 Annals of Botany Company Helianthus annuus L., cadmium, nitrogen, photosynthesis, Rubisco, sunflower  相似文献   

9.
Trends in several photosynthetic parameters and their responseto changed growth light were followed for 15 d in leaves ofyoung birch saplings using a rapid-response gas exchange measuringequipment. These in vivo measurements were compared to biochemicalassays that were made from the same leaves after the gas exchangestudies. The measurements were made on leaves that were selectedprior to the study and were at that time of similar age. Forthe first 7 d the photosynthetic parameters were followed fromthe growth conditions of moderate light (200 µmol m–2s–1; referred to as controls later in the text). On day7 some of the saplings were transferred to grow either underhigh (450 µmol m–2 s–1; referred to as highlight plants) or low (75 µmol m–2 s–1; referredto as low light plants) light and the capability of the preselectedleaves for acclimation was followed for 6 d. For comparison,at the end of the experiment the measurements were made on bothcontrols and on young leaves that had developed under high andlow light. Generally the in vivo measured rate of CO2 uptake (gross photosynthesis)both at 310 ppm CO2 and 2000 ppm CO2 corresponded very wellto the biochemically determined CO2 fixation capacity in vitroafter rapid extraction (measured as the initial and total activityof Rubisco, respectively). However, if the flux of CO2 intothe chloroplasts was limited by the closure of the stomata,as was the case of the high light plants, then the in vitromeasured Rubisco activity was greater than the in vivo measuredCO2 uptake. Vmax, calculated from the mesophyll conductanceat 1% O2, exceeded the initial activity of Rubisco (assayedat saturating RuBP and CO2) constantly by 60%. The catalyticactivity of Rubisco in birch leaves was overall very low, evenwhen calculated from the total activity of Rubisco (Kcat 0.63–1.18 s–1), when compared to herbaceous C3 species. Signs of light acclimation were not observed in most of thephotosynthetic parameters and in chloroplast structure whenmature birch leaves were subjected to changes in growth lightfor 6 d. However, the change of the growth light either to highor low light caused day-to-day fluctuations in most of the measuredphotosynthetic parameters and in the case of the high lightplants signs of photoinhibition and photodestruction were alsoobserved (decrease in the amount of chlorophyll and increasein chlorophyll a/b ratio). As a result of these fluctuationsthese plants achieved a new and lower steady-state conditionbetween the light and dark reactions, as judged from the molarratio of RuBP to Rubisco binding site. Key words: Acclimation, photosynthesis, light, Rubisco, birch  相似文献   

10.
Ward, D. A. and Drake, B. G. 1987. Photoinhibition under atmosphericO2, the activation state of RuBP carboxylase and the contentof photosynthetic intermediates in soybean and wheat.—J.exp. Bot. 38: 1937–1948. Associations between photosynthesis, the activation state ofRuBP carboxylase and the contents of photosynthetic intermediateswere compared in soybean and wheat leaves before and after exposureto photoinhibitory treatments in the presence of atmosphericO2. Exposing attached leaves to a supra-saturating irradiance(3 800 µmol quanta m– 2 s–1) for 2 h in CO2-freeair decreased carboxylation efficiency and the light-saturatedphotosynthetic rate in air by approximately 50%. Exposure tothe photoinhibitory treatment for periods in excess of 2 h didnot cause a further decrease of photosynthesis in soybean. Althoughphotosynthesis was reduced, the initial and total (fully-activated)activities of ribulose 1,5-bisphosphate carboxylase (RuBPCase)in leaf extracts were unaltered in each species by the photoinhibitorytreatment. This was true for leaves sampled under both air andat a rate-limiting intercellular CO2 partial pressure (Ci) of75 µPa Pa–1. The contents of ribulose l,5-bisphosphate(RuBP) and 3-phosphoglyceric acid (3-PGA) were reduced by thephotoinhibitory treatment in soybean leaves sampled in air andat a rate-limiting Ci, although the RuBP/3-PGA ratio was unaffected.The relative reduction of RuBP content in soybean leaves atrate-limiting C1 was similar to the corresponding reductionof carboxylation efficiency. For wheat,the relative reductionof RuBP content at rate-limiting Ci (–19%) caused by thephotoinhibitory treatment was considerably less than the correspondingdecrease of carboxylation efficiency (–49%).The RuBP/3-PGAratio of wheat was also increased significantly by the photoinhibitorytreatment The significance of these observations to the regulationof CO2-limited photosynthesis in leaves experiencing photoinhibitionunder atmospheric oxygen is discussed. Consideration is alsogiven to the previous contention that contemporary measurementsof initial activity in crude extracts may provide a spuriousindication of the amount of the enzyme-CO2-Mg2 + form of RuBPcarboxylase present in the leaf. Key words: Carboxylation efficiency, RuBP carboxylase, photoinhibition, RuBP, 3-PGA  相似文献   

11.
Gas exchange measurements were undertaken on 2-year-old plantsof Clusia rosea. The plants were shown to have the ability toswitch from C3-photosynthesis to CAM and vice versa regardlessof leaf age and, under some conditions, CO2 was taken up continuously,throughout the day and night. The light response was saturatedby 120 µmol m–2 s–1 typical of a shade plant. Gas exchange patterns in response to light, water and VPD wereexamined. All combinations of daytime and night-time CO2 uptakewere observed, with rates of CO2 uptake ranging from 2 to 11µmol m–2 s–1 depending upon water status andlight. Categorization of this plant asC3, CAM or an intermediateis impossible. Differing VPD affected the magnitude of changesfrom CAM to C3-photosynthesis (0 to 0.5 and 0 to 6.0 µmolm–2 s–1 CO2, respectively) when plants were watered.Under well-watered conditions, but not under water stress, highPPFD elicited changes from CAM to C3 gas exchange. This is unusualnot only for a shade plant but also for a plant with CAM. Itis of ecological importance for C. rosea, which may spend theearly years of its life as an epiphyte or in the forest understorey,to be able to maximize photosynthesis with minimal water loss. Key words: Clusia rosea, CAM, C3, stress  相似文献   

12.
Mistletoes usually have slower rates of photosynthesis thantheir hosts. This study examines CO2assimilation, chlorophyllfluorescence and the chlorophyll content of temperate host–parasitepairs (nine hosts parasitized by Ileostylus micranthus and Carpodetusserratus parasitized by Tupeia antarctica). The hosts of I.micranthus had higher mean annual CO2assimilation (3.59 ±0.41 µmol m-2 s-1) than I. micranthus(2.42 ± 0.20µmol m-2 s-1), and C. serratus(2.41 ± 0.43 µmolm-2 s-1) showed higher CO2assimilation than T. antarctica(0.67± 0.64 µmol m-2 s-1). Hosts saturated at significantlyhigher electron transport rates (ETR) and light levels thanmistletoes. The positive relationship between CO2assimilationand electron transport suggests that the lower CO2assimilationrates in mistletoes are a consequence of lower electron transportrates. When photosynthetic rates, ETR and chlorophyll a /b ratioswere adjusted for photosynthetically active radiation, hostsdid not have significantly higher CO2assimilation (3.21 ±0.37 µmol m-2 s-1) than mistletoes (2.54 ± 0.41µmol m-2 s-1), but still had significantly higher ETRand chlorophyll a / b ratios. The electron transport rates,saturating light and chlorophyll a / b ratios of sun leavesfrom mistletoes were similar to host shade leaves. These responsesindicate that in comparison with their hosts, mistletoe leaveshave the photosynthetic characteristics of the leaves of shadeplants. Copyright 2000 Annals of Botany Company CO2assimilation, photosynthetic active radiation (PAR), chlorophyll fluorescence, electron transport rate (ETR), photochemical quenching (qp), non-photochemical quenching (qn), sun and shade leaves, chlorophyll content, Ileostylus micranthus, Tupeia antarctica, New Zealand  相似文献   

13.
Changes in carbon fixation rate and the levels of photosyntheticproteins were measured in fourth leaves of Lolium temulentumgrown until full expansion at 360 µmol quanta m–2s–1 and subsequently at the same irradiance or shadedto 90 µmol m–2 s–1. Ribulose-1,5-bisphosphatecarboxylase/oxygenase (Rubisco), light-harvesting chlorophylla/b protein of photosystem II (LHCII), 65 kDa protein of photosystemI (PSI), cytochrome f (Cytf) and coupling factor 1 (CF1) declinedsteadily in amount throughout senescence in unshaded leaves.In shaded leaves, however, the decrease in LHCII and the 65kDa protein was delayed until later in senescence whereas theamount of Cyt f protein decreased rapidly following transferto shade and was lower than that of unshaded leaves at the earlyand middle stages of senescence. Decreases in the Rubisco andCF1 of shaded leaves occurred at slightly reduced rates comparedwith unshaded leaves. These results indicate that chloroplastproteins in fully-expanded leaves are controlled individually,in a direction appropriate to acclimate photosynthesis to agiven irradiance during senescence. (Received August 20, 1992; Accepted January 5, 1993)  相似文献   

14.
The Cyanobacterium Anabaena variabilis ATCC 29413 grown at lowCO2 concentration under mixotrophic conditions with fructoseshowed a repression in the ability to fix inoganic carbon. Thisrepression was not due to a diminution in the ability to transportexternal inorganic carbon but could be explained by a decreaseof two enzymatic activities involved in the assimilation ofinorganic carbon: carbonic anhydrase and Rubisco. Carbonic anhydraseactivity was close to 50% lower in mixotrophic than in autotrophiccells. Moreover growth under mixotrophic conditions reducedRubisco activity at all dissolved inorganic carbon concentrationsassayed (5–60 mM). Maximum Rubisco activity (Vmax decreasedfrom µmol CO2 mg protein-1h-1 in autotrophic cells to2.3 µmol CO2 mg protein-1h-1 in mixotrophic cells. Nosignificant differences in Km(C1) between autotrophic and mixotrophiccells were however observed. The possible mechanisms involvedin the inhibition of Rubisco are discussed. (Received November 8, 1994; Accepted October 12, 1995)  相似文献   

15.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

16.
Red beech (Nothofagus fusca (Hook. F.) Oerst.; Fagaceae) andradiata pine (Pinus radiata D. Don; Pinaceae) were grown for16 months in large open-top chambers at ambient (37 Pa) andelevated (66 Pa) atmospheric partial pressure of CO2, and incontrol plots (no chamber). Summer-time measurements showedthat photosynthetic capacity was similar at elevated CO2 (lightand CO2-saturated value of 17.2 µmol m–2 s–1for beech, 13.5 µmol m–2 s–1 for pine), plantsgrown at ambient CO2 (beech 21.0 µmol–2 s–1,pine 14.9 µmol m–2s–1) or control plants grownwithout chambers (beech 23.2 µmol m–2 s–1,pine 12.9 µmol m–2 s–1). However, the higherCO2 partial pressure had a direct effect on photosynthetic rate,such that under their respective growth conditions, photosynthesisfor the elevated CO2 treatment (measured at 70 Pa CO2 partialpressure: beech 14.1 µmol m–2 s–1 pine 10.3)was greater than in ambient (measured at 35 Pa CO2: beech 9.7µmol m–2 s–1, pine 7.0 µmol m–2s–1) or control plants (beech 10.8 µmol m–2s–1, pine 7.2 µmol m–2 s–1). Measurementsof chlorophyll fluorescence revealed no evidence of photodamagein any treatment for either species. The quantity of the photoprotectivexanthophyll cycle pigments and their degree of de-epoxidationat midday did not differ among treatments for either species.The photochemical efficiency of photosystem II (yield) was lowerin control plants than in chamber-grown plants, and was higherin chamber plants at ambient than at elevated CO2. These resultssuggest that at lower (ambient) CO2 partial pressure, beechplants may have dissipated excess energy by a mechanism thatdoes not involve the xanthophyll cycle pigments. Key words: Carotenoids, chlorophyll fluorescence, photosynthesis, photoinhibition, photoprotection, xanthophyll cycle  相似文献   

17.
Photosynthesis by developing embryos of oilseed rape (Brassica napus L.)   总被引:1,自引:0,他引:1  
The aim of this study was to assess the photosynthetic potentialof developing seeds of oilseed rape (Brassica napus L.) andto compare photosynthetic properties of embryo plastids withthose of leaf chloroplasts from the same species. Measurementsof CO2-dependent O2 evolution show that developing seeds ofB. napus are photosynthetically active in vitro. Essentially,all of the photosynthetic activity of the developing seed isaccounted for by the embryo. The rate of photosynthesis by developingembryos increased until the onset of desiccation, after whichit declined, so that by maturity embryos were no longer photosyntheticallyactive. Photosynthetic activity was positively correlated withchlorophyll content throughout development. Comparison of thephotosynthetic characteristics of leaf and embryo chloroplastsrevealed that rates of uncoupled electron transport were 2.5-foldgreater in those from the embryo. Light-saturated rates of CO2-dependentO2 evolution, per unit chlorophyll, and CO2 saturation pointswere similar for chloroplasts from both tissues. However, light-saturationpoints and chlorophyll a/b ratios were lower for embryo thanfor leaf choroplasts. Embryos and embryo chloroplasts also containedconsiderably less ribulose 1,5-bisphosphate carboxylase/oxygenaseprotein per unit total protein, than leaves. Although excisedembryos were capable of high rates of CO2-dependent O2 evolution(90–100 mol mg–1 chlorophyll h–1) under asaturating photosynthetic photon flux density (PPFD), low transmittanceof light through the silique wall (30%), together with the highPPFD required to achieve light compensation points in developingseeds (500 mol m–2 s–1), suggests that photosynthesisin vivo is unlikely to make a net contribution to carbon economyunder normal environmental conditions. Key words: Embryo, development, photosynthesis, chloroplast, Brassica napus L.  相似文献   

18.
Reddy, A. R. and Das, V. S. R. 1987. Modulation of sucrose contentby fructose 2,6-bisphosphate during photosynthesis in rice leavesgrowing at different light intensities.—J. exp. Bot. 38:828–833. The relationship between the rate of CO2 fixation and sucroseconcentration in the leaves of rice (Oryza sativa L.) grownat different light intensities was investigated. Maximum sucrosecontent coincided with maximum rates of CO2 fixation, achievedat a photon flux density of 1600 µmol m–2 s–1.The levels of sucrose and fructose 2,6-bisphosphate were alsocompared in the leaves under different light intensities. Fructose2,6-Msphosphate accumulated during growth at low light. Theactivity of fructose-6-phosphate 2-kinase was high in the leavesgrown at low light while that of fructose-2,6-bisphosphatasewas low. The activities of phosphoglucose isomerase and phospho-glucomutasewere slightly increased by growth at low light The activitiesof UDP glucose pyrophosphorylase were adversely affected invitro with increased concentrations of fructose 2,6-bisphosphatewhile those of sucrose phosphate synthase were moderately affected.Phosphoglucose isomerase and phosphoglucomutase were activatedby fructose 2,6-bisphosphate (8-0 mmol m–3) by 12-15%.The results suggested that low light intensities during growthresult in an accumulation of fructose 2,6-bisphosphate whichmodulates the key enzymes of sucrose biosynthesis thus regulatingcarbon flow under conditions of limited photosynthesis. Key words: Oryza sativa, photosynthesis, sucrose synthesis, fructose 2,6-bisphosphate, light  相似文献   

19.
Phosphate uptake kinetics of Synechococcus sp. WH7803 and Thalassiosiraweissflogii were studied in axenic batch culture. Phosphate-repleteSynechococcus sp. WH7803 cells have a lower affinity for inorganicphosphate (Pi) (Ks = 67 µmol l–1) than Pi-starvedcells (Ks = 3.1 µmol l–1). The Ks of Pi-starvedcells increased  相似文献   

20.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号