首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The previously described high-molecular-weight polyprotein major translational product of the Snyder-Theilen strain of feline sarcoma virus (FeSV) was shown to possess protein kinase activity with specificity for tyrosine acceptor sites. Cells transformed by Snyder-Theilen FeSV exhibited constitutively elevated levels of phosphotyrosine and a concomitant reduction in epidermal growth factor (EGF) binding sites. By endpoint cloning in microtiter plates, a number of transformation-defective (tf) mutants of the Snyder-Theilen strain of FeSV were isolated. Mink cells nonproductively infected by such mutants were morphologically nontransformed, failed to grow in soft agar, bound EGF as efficiently as control mink cells, and lacked rescuable transforming virus. Although the level of expression of the major viral polyprotein translational product in td mutant-infected clones was comparable to that of wild-type (wt) transformants, the polyprotein in mutant clones lacked detectable protein kinase activity and total cellular phosphotyrosine levels were not elevated significantly above control values. Of a large number of wt Snyder-Theilen FeSV-transformed mink cell clones isolated, the majority were found to revert to a nontransformed morphology upon continuous passage in cell culture. Such nontransformed variants, as well as a Gardner FeSV-transformed mink cell revertant, lacked detectable polyprotein expression and exhibited levels of phosphotyrosine and EGF binding similar to those of control mink cells. These findings provide strong evidence favoring the involvement of the Snyder-Theilen FeSV-encoded high-molecular-weight polyprotein and its associated tyrosine-specific protein kinase activity in transformation.  相似文献   

2.
The Gardner and Snyder-Theilen isolates of feline sarcoma virus (FeSV) have previously been shown to encode high-molecular-weight polyproteins with a transforming function and an associated tyrosine-specific protein kinase activity. Cells transformed by these viruses exhibited morphological alterations, elevated levels of phosphotyrosine, and a reduced capacity for binding epidermal growth factor. In addition, polyproteins encoded by both of these FeSV isolates bound to, and phosphorylated tyrosine acceptor sites within, a 150,000-molecular-weight cellular substrate (P150). McDonough FeSV-transformed cells resembled Gardner and Snyder-Theilen FeSV transformants with respect to morphological changes and a reduced capacity for epidermal growth factor binding. in contrast to the other two FeSV isolates, however, McDonough FeSV encoded as its major translational product a high-molecular-weight polyprotein with probable transforming function but without protein kinase activity detectable under similar assay conditions. Moreover, total cellular levels of phosphotyrosine remained unaltered in McDonough FeSV-transformed cells, and the major McDonough FeSV polyprotein translational product lacked binding affinity for P150. These findings argue for differences in the mechanisms of transformation by these independently derived FeSV isolates.  相似文献   

3.
Polyproteins encoded by several independent isolates of feline sarcoma virus (FeSV) were analyzed with respect to molecular weight, extent of phosphorylation, and tryptic peptide composition. As previously reported, cells nonproductively transformed by the Gardner strain of FeSV express a polyprotein which has a molecular weight of approximately 115,000 and contains feline leukemia virus p15, p12, and minor portion of p30. In addition, a major 72,000-dalton possible cleavage product can be identified. Snyder-Theilen FeSV-transformed cells express a major polyprotein of approximately 115,000 daltons and a second highly related 80,000-dalton protein. The p12 structural component of Gardner FeSV P115, but not Snyder-Theilen FeSV 115, corresponds to feline leukemia virus subgroup A with respect to immunological type specificity, a finding consistent with the independent origin of these viruses. Tryptic peptide analysis revealed five methionine-containing peptides specific to the nonstructural portion of Gardner FeSV 115, three of which were also represented in Snyder-Theilen FeSV P115, three of which were also represented in Snyder-Theilen FeSV P115. None of these [35S]methionine-labeled tryptic peptides were present in translational products representative of the complete feline leukemia virus subgroup A genome, including Pr180gag-pol, Pr65gag, and Pr82env. Similarly phosphorylated tryptic peptides within the structural (p12) and nonstructural components of Gardner FeSV P115 and Snyder-Theilen FeSV P115 Are highly related. These findings support the possibility that acquired sequences of two independently derived isolates of FeSV encode structurally related proteins.  相似文献   

4.
A series of hybridomas have been isolated which produce monoclonal antibodies directed against polyprotein gene products of the Gardner, Snyder-Theilen, and McDonough strains of FeSV. Within these are representatives of several immunoglobulin classes including IgG1, IgG2a, IgG2b, IgG2c, and IgM. Antibody produced by one hybridoma recognizes immunologic determinants localized within an FeLV gag gene structural component (p15) common to polyproteins encoded by all three FeSV isolates whereas antibody produced by a second is specific for p30 determinants unique to P170gag-fms. Additional hybridomas secrete antibody directed against v-fes-encoded determinants common to the Gardner and Snyder-Theilen FeSV-encoded polyproteins. GA P110gag-fes and ST P85gag-fes immunoprecipitated by antibody directed against p15 exhibit tyrosine-specific protein kinase activity but lack such activity when precipitated by antibody specific for their acquired sequence (v-fes) components.  相似文献   

5.
Several transformation-defective (td) mutants of Abelson murine leukemia virus (AbLV) are described. Cells nonproductively infected with such mutants exhibited a high degree of growth contact inhibition, failed to form colonies in soft agar, lacked rescuable transforming virus, and were as susceptible as uninfected control cells to transformation by wild-type (wt) AbLV pseudotype virus. In addition, each of several td AbLV nonproductively infected cell clones analyzed was found to be nontumorigenic in vivo. Biochemical analysis of td mutant AbLV-infected clones revealed levels of expression of the major AbLV translational product, P120, and a highly related 80,000-Mr AbLV-encoded protein, P80, at concentrations analogous to those in wt AbLV-transformed cells. Although the AbLV-specific 120,000-Mr polyproteins expressed in td mutant AbLV-infected clones were indistinguishable from those in wt AbLV-transformed lines with respect to molecular weight and [35S]methionine tryptic peptide composition, they each differed from wt AbLV P120 in their patterns of post-translational phosphorylation. A previously described AbLV-associated protein kinase activity is shown to recognize as substrate a major tyrosine-specific acceptor site(s) contained within a single well-resolved tryptic peptide common to both AbLV P120 and P80. In vitro [gamma-32P]ATP-mediated labeling of this phosphorylation site was reduced to below detectable levels in td mutant nonproductively infected cell clones. These findings establish that the AbLV-encoded polyprotein P120 and its associated protein kinase activity are involved in AbLV tumorigenesis.  相似文献   

6.
Hybridomas secreting monoclonal antibodies directed against polyprotein gene products of the Gardner, Snyder-Theilen, and McDonough strain of feline sarcoma virus have been isolated. Antibody produced by one hybridoma recognizes immunological determinants localized within a feline leukemia virus gag gene structural component (p15) common to polyproteins encoded by each feline sarcoma virus isolate while antibody produced by a second is specific for p30 determinants unique to P170gag-fms. Additional hybridomas secrete antibody directed against v-fes specific determinants common to the Gardner and Snyder-Theilen feline sarcoma virus-encoded polyproteins and to v-fms determinants unique to P170gas-fms polyprotein. GA P110gas-fes and ST P85gas-fes immunoprecipitated by antibody directed against p15 exhibit readily detectable levels of protein kinase activity but lack such activity when precipitated by antibody specific for their acquired sequence (v-fes) components. P170gas-fms immunoprecipitated by monoclonal antibody to either p15 or p30 lacks detectable levels of autophosphorylation but represents a substrate for the GA P110gag-fes and ST P85gag-fes enzymatic activities. These findings argue that the v-fes-associated protein kinase represents an intrinsic property of the v-fes gene product and recognizes tyrosine acceptor sites within polyprotein gene products of all three strains of feline sarcoma virus.  相似文献   

7.
Four phenotypically normal mink cell clones, each containing a transformation-defective provirus of the Snyder-Theilen strain of feline sarcoma virus (ST-FeSV), synthesized an 85,000-dalton viral polyprotein (P85) indistinguishable in size and antigenic complexity from that encoded by wild-type transforming ST-FeSV. An additional transformation-defective, ST-FeSV-containing flat cell clone produced a polyprotein of 88,000 daltons (P88). The viral polyproteins immunoprecipitated from cytoplasmic extracts of these cells lacked the tyrosine-specific protein kinase activity associated with the wild-type ST-FeSV gene product. In addition, the products encoded by representative transformation-defective ST-FeSV genomes were poorly phosphorylated in vivo and lacked detectable phosphotyrosine residues. Whereas proteins of ST-FeSV transformants contained elevated levels of phosphotyrosine, those of mink cells containing transformation-defective ST-FeSV exhibited phosphotyrosine levels no higher than those found in uninfected cells. These findings provide genetic evidence that the tyrosine-specific protein kinase activity associated with ST-FeSV P85 is required for virus-induced transformation.  相似文献   

8.
Mink cell cultures infected with the Snyder-Theilen strain of feline sarcoma-leukemia virus were cloned from single cells under conditions favoring single virus-single cell interactions. The primary colonies included (i) typical feline sarcoma virus (FeSV)-transformed nonproducer clones, one of which segregated revertants, and (ii) FeSV-infected, phenotypically normal clones, three of which spontaneously converted to the transformed phenotype. The revertants and spontaneous transformants were compared with parental and sister clones expressing the opposite phenotype. Transformed subclones formed colonies in agar, were tumorigenic in nude mice, and failed to bind epidermal growth factor, whereas flat sister subclones were indistinguishable from uninfected mink cells in each of these assays. Sister subclones derived from the same infectious event contained FeSV proviruses integrated at the same molecular site, regardless of which phenotype was expressed. One revertant clone, however, lacked most FeSV proviral DNA sequences but retained terminal portions of the FeSV genome which persisted at the original site of proviral DNA insertion. Two flat subclones expressed viral RNA and the phosphorylated "gag-x" polyprotein (pp78gag-x) encoded by the gag and src sequences of the FeSV genome. Both of these clones were susceptible to retransformation by FeSV. Although unable to induce foci, the viruses rescued from these cells contained as much FeSV RNA as the focus-forming viruses rescued from transformed sister subclones and could be retransmitted to mink cells, again inducing FeSV gene products without signs of morphological transformation. We conclude that these FeSV genomes represent transformation-defective mutants.  相似文献   

9.
A tumor promoter stimulates phosphorylation on tyrosine   总被引:27,自引:0,他引:27  
The tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate is mitogenic for normal chicken embryo fibroblasts and also causes these cells to express transiently many properties of cells transformed by Rous sarcoma virus. Since some mitogenic hormones stimulate a tyrosine-specific protein kinase activity, and since the transforming protein of RSV is a tyrosine-specific protein kinase, we have examined whether TPA also stimulates protein phosphorylation on tyrosine. We report here that TPA treatment of normal cells resulted in a very rapid phosphorylation on tyrosine of a protein peak of Mr 40 to 43 kilodaltons. Thus, a similar biochemical activity (tyrosine phosphorylation) is associated with the action of polypeptide mitogenic hormones, Rous sarcoma virus and a tumor promoter. In addition, TPA treatment resulted in rapid changes in phosphorylation of proteins on serine and threonine.  相似文献   

10.
The phosphorylation sites of the P140gag-fps gene product of Fujinami avian sarcoma virus have been identified and localized to different regions of this transforming protein. FSV P140gag-fps isolated from transformed cells is phosphorylated on at least three distinct tyrosine residues and one serine residue, in addition to minor phosphorylation sites shared with Pr76gag. Partial proteolysis with virion protease p15 or with Staphylococcus aureus V8 protease has been used to generate defined peptide fragments of P140gag-fps and thus to map its phosphorylation sites. The amino-terminal gag-encoded region of P140gag-fps contains a phosphotyrosine residue in addition to normal gag phosphorylation sites. The two major phosphotyrosine residues and the major phosphorserine residue are located in the carboxy-terminal portion of the fps-encoded region of P140gag-fps. P140gag-fps radiolabeled in vitro in an immune complex kinase reaction is phosphorylated at only one of the two C-terminal tyrosine residues phosphorylated in vivo and weakly phosphorylated at the gag-encoded tyrosine and at a tyrosine site not detectably phosphorylated in vivo. Thus, the in vitro tyrosine phosphorylation of P140gag-fps is distinct from that seen in the transformed cell. A comparative tryptic phosphopeptide analysis of the gag-fps proteins of three Fujinami avian sarcoma virus variants showed that the phosphotyrosine-containing peptides are invariant, and this high degree of sequence conservation suggests that these sites are functionally important or lie within important regions. The P105gag-fps transforming protein of PRCII avian sarcoma virus lacks one of the C-terminal phosphotyrosine sites found in Fujinami avian sarcoma virus P140gag-fps. Partial trypsin cleavage of FSV P140gag-fps immunoprecipitated with anti-gag serum releases C-terminal fragments of 45K and 29K from the immune complex that retain an associated tyrosine-specific protein kinase activity. This observation, and the localization of the major P140gag-fps phosphorylation sites to the C-terminal fps region, indicate that the kinase domain of P140gag-fps is located at its C terminus. The phosphorylation of P140gag-fps itself is complex, suggesting that it may itself interact with several protein kinases in the transformed cell.  相似文献   

11.
Fujinami sarcoma virus (FSV) and PRCII are avian sarcoma viruses which share cellularly derived v-fps transforming sequences. The FSV P140gag-fps gene product is phosphorylated on three distinct tyrosine residues in transformed cells or in an in vitro kinase reaction. Three variants of FSV, and the related virus PRCII which lacks about half of the v-fps sequence found in FSV, encode gene products which are all phosphorylated at tyrosine residues contained within identical tryptic peptides. This indicates a stringent conservation of amino acid sequence at the tyrosine phosphorylation sites which presumably reflects the importance of these sites for the biologic activity of the transforming proteins. Under suitable conditions the proteolytic enzymes p15 and V8 protease each introduce one cut into FSV P140, p15 in the N-terminal gag-encoded region and V8 protease in the middle of the fps-encoded region. Using these enzymes we have mapped the major site of tyrosine phosphorylation to the C-terminal end of the fps region of FSV P140gag-fps. A second tyrosine phosphorylation site is found in the fps region of FSV P140 isolated from transformed cells, and a minor tyrosine phosphorylation site is found in the N-terminal gag-encoded region. Our results suggest that the C-terminal fps-encoded region is required for expression of the tyrosine-specific protein kinase activity.  相似文献   

12.
The feline c-fes proto-oncogene, different parts of which were captured in feline leukemia virus (FeLV) to generate the transforming genes (v-fes) of the Gardner-Arnstein (GA) strain of feline sarcoma virus (FeSV) and the Snyder-Theilen strain (ST) of FeSV, was cloned and its genetic organization determined. Southern blot analysis revealed that the c-fes genetic sequences were distributed discontinuously and colinearly with the v-fes transforming gene over a DNA region of around 12.0 kb. Using cloned c-fes sequences, complementation of GA-FeSV transforming activity was studied. Upon replacement of the 3' half of v-fesGA with homologous feline c-fes sequences and transfection of the chimeric gene, morphological transformation was observed. Immunoprecipitation analysis of these transformed cells revealed expression of high Mr fusion proteins. Phosphorylation of these proteins was observed in an in vitro protein kinase assay, and tyrosine residues appeared to be involved as acceptor amino acid.  相似文献   

13.
In this study, we demonstrated the expression of a 170,000-Mr polyprotein in each of several McDonough feline sarcoma virus (FeSV)-transformed mink cell clones and one McDonough FeSV-transformed rat clone. This polyprotein designated McDonough FeSV P170, contained feline leukemia virus (FeLV) p15, p12, and p30 immunological determinants and shared two of its five [35S]methionine-labeled tryptic peptides with FeLV Pr180gag-pol. Both of these peptides were shown to be specific to the p30 component of Pr180gag-pol. The remaining McDonough FeSV P170 methionine-containing peptides were not represented within either FeLV Pr180gag-pol or Pr82env. Of interest, of the three peptides specific to the nonstructural component of McDonough FeSV P170, one was also represented in the 115,000-Mr polyproteins encoded by the Gardner and Snyder-Theilen strains of FeSV. These findings raise the possibility that the nonstructural components of polyproteins encoded by each of the three independently derived feline transforming viruses contained both common and unique regions. Moreover, if the sequences encoding these components are involved in transformation, as appears to be the case, our findings establish that the position of their insertion within the gag-pol region of the FeLV genome can vary among individual isolates.  相似文献   

14.
The primary translational product of the McDonough (SM) strain of feline sarcoma virus (FeSV) is a 180,000-dalton molecule, SM P180, that contains the p15-p12-p30 region of the FeLV gag gene-coded precursor protein and a sarcoma virus-specific polypeptide. In addition, cells transformed by SM-FeSV express a 120,000-dalton molecule, SM P120, that is highly related to the non-helper virus domain of SM P180. Both SM-FeSV gene products were found to be intimately associated with the membrane fraction of SM-FeSV-transformed cells. Immunoprecipitates containing SM P180 and SM P120 exhibited a protein kinase activity capable of phosphorylating tyrosine residues of both viral gene products but not immune immunoglobulin G molecules. By independently immunoprecipitating each of the two SM-FeSV proteins we found that most of the tyrosine-specific phosphorylating activity was associated with the SM P120 molecule. In vivo analysis of 32P-labeled SM P180 and SM P120 revealed their phosphoprotein nature; however, both molecules exhibited low levels of phosphorylation and did not contain phosphotyrosine residues. Finally, we did not detect any significant elevation in the levels of phosphotyrosine in the protein fraction of SM-FeSV transformants. Thus, if SM-FeSV were to induce malignant transformation by a mechanism involving phosphorylation of tyrosine residues, the viral gene products must interact with a small subset of cellular proteins that do not represent a significant fraction of the total cellular protein content.  相似文献   

15.
An alpha-type transforming growth factor (TGF alpha) is produced at high levels by rat embryo cells transformed by the Snyder-Theilen strain of feline sarcoma virus (FeSV). Addition of 2 ng mouse epidermal growth factor (mEGF) during purification identified the presence of a second, EGF-dependent growth factor of the TGF beta type (TGF beta) in this conditioned medium. This factor had an approximate Mr of 12,000 and eluted at 37% acetonitrile during high performance liquid chromatography. This extracellular type of TGF beta activity also was present in conditioned medium of rat cells after infection with a transformation defective strain of Abelson leukemia virus, and hence expression of this growth factor activity was independent of cell transformation. Moreover, the presence of an EGF-dependent, 12,000 Mr clonogenic activity in extracts of bovine serum alone suggests serum as an origin for the B-type transforming growth factor initially observed in conditioned medium of Snyder-Theilen FeSV transformed cells. This does not, however, preclude the possibility that TGF beta is also secreted by the transformed rat embryo cells themselves.  相似文献   

16.
Lymphocyte membrane fractions from both normal and neoplastic sources exhibit tyrosine-specific protein kinase activity. The molecular weights of the endogenous substrates phosphorylated on tyrosine residues differ in B and T cells. To further characterize membrane tyrosine phosphorylation in the two major classes of lymphocytes, the tryptic phosphopeptides of their endogenous substrates were compared and the sensitivity of the kinases to inhibition by N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK) was determined. The two major B cell substrates (61,000 and 55,000 daltons, p61 and p55) were gel purified after phosphorylation and exhaustively digested with trypsin. Separation by reverse phase high pressure liquid chromatography demonstrated that these two substrates had two identical phosphotyrosine containing tryptic phosphopeptides. p61 had an additional phosphotyrosine site. Parallel analysis of the two T cell substrates (64,000 and 58,000 daltons, p64 and p58) showed that they also contained two phosphotyrosine sites that were identical. However, the tryptic phosphopeptides from the B and T cell substrate pairs were clearly distinct suggesting that they arise from different gene products. When B and T cell membrane fractions were preincubated with TLCK (21 degrees C, 30 min) a dose-dependent decrease in p64 and p58 phosphorylation resulted. p61 and p55 phosphorylation was not affected at concentrations up to 10 mM TLCK. Tyrosine-specific kinase activity was also assessed by measuring phosphorylation of a tyrosine containing synthetic peptide. The kinase activity of T cell plasma membrane fractions was inhibited by TLCK; the B cell activity was unaffected. The results suggest that membrane fractions from normal and some neoplastic B and T cells have at least two different tyrosine-specific kinases.  相似文献   

17.
18.
G Weinmaster  M J Zoller  M Smith  E Hinze  T Pawson 《Cell》1984,37(2):559-568
The 130 kd transforming protein of Fujinami sarcoma virus (FSV P130gag -fps) possesses a tyrosine-specific protein kinase activity and is itself phosphorylated at several tyrosine and serine residues in FSV-transformed cells. We have used oligonucleotide-directed mutagenesis of the FSV genome to change the TAT codon for tyrosine (1073), the major site of P130gag -fps phosphorylation, to a TTT codon for phenylalanine that cannot be phosphorylated. This mutant FSV induces the transformation of rat-2 cells but with a long latent period as compared with wild-type FSV. The P130gag -fps protein encoded by the mutant retains the ability to phosphorylate tyrosine, but is five times less active as a kinase in vitro than wild-type FSV P130gag -fps. These data indicate that tyrosine phosphorylation stimulates the biochemical and biological activities of FSV P130gag -fps, and they set a precedent for the ability of this amino acid modification to modulate protein function.  相似文献   

19.
The genetic structure of the McDonough strain of feline sarcoma virus (SM-FeSV) was deduced by analysis of molecularly cloned, transforming proviral DNA. The 8.2-kilobase pair SM-FeSV provirus is longer than those of other feline sarcoma viruses and contains a transforming gene (v-fms) flanked by sequences derived from feline leukemia virus. The order of genes with respect to viral RNA is 5'-gag-fms-env-3', in which the entire feline leukemia virus env gene and an almost complete gag sequence are represented. Transfection of NIH/3T3 cells with cloned SM-FeSV proviral DNA induced foci of morphologically transformed cells which expressed SM-FeSV gene products and contained rescuable sarcoma viral genomes. Cells transformed by viral infection or after transfection with cloned proviral DNA expressed the polyprotein (P170gag-fms) characteristic of the SM-FeSV strain. Two proteolytic cleavage products (P120fms and pp55gag) were also found in immunoprecipitates from metabolically labeled, transformed cells. An additional polypeptide, detected at comparatively low levels in SM-FeSV transformants, was indistinguishable in size and antigenicity from the envelope precursor (gPr85env) of feline leukemia virus. The complexity of the v-fms gene (3.1 +/- 0.3 kilobase pairs) is approximately twofold greater than the viral oncogene sequences (v-fes) of Snyder-Theilen and Gardner-Arnstein FeSV. By heteroduplex, restriction enzyme, and nucleic acid hybridization analyses, v-fms and v-fes sequences showed no detectable homology to one another. Radiolabeled DNA fragments representing portions of the two viral oncogenes hybridized to different EcoRI and HindIII fragments of normal cat cellular DNA. Cellular sequences related to v-fms (designated c-fms) were much more complex than c-fes and were distributed segmentally over more than 40 kilobase pairs in cat DNA. Comparative structural studies of the molecularly cloned proviruses of Synder-Theilen, Gardner-Arnstein, and SM-FeSV showed that a region of the feline-leukemia virus genome derived from the pol-env junction is represented adjacent to v-onc sequences in each FeSV strain and may have provided sequences preferred for recombination with cellular genes.  相似文献   

20.
The catalytic domain of clostridial neurotoxins is a substrate of tyrosine-specific protein kinases. The functional role of tyrosine phosphorylation and also the number and location of its (their) phosphorylation site(s) are yet elusive. We have used the recombinant catalytic domain of botulinum neurotoxin E (BoNT E) to examine these issues. Bacterially expressed and purified BoNT E catalytic domain was fully active, and was phosphorylated in vitro by the tyrosine-specific kinase Src. Tyrosine phosphorylation of the catalytic domain increased the protein thermal stability without affecting its proteolytic activity. Covalent modification of the endopeptidase promoted a disorder-to-order transition, as evidenced by the 35% increment of the alpha-helical content, which resulted in a 4 degrees C increase of its denaturation temperature. Site-directed replacement of tyrosine at position 67 completely abolished phosphate incorporation by Src. Constitutively unphosphorylated endopeptidase mutants exhibited functional properties virtually identical to those displayed by the nonphosphorylated wild-type catalytic domain. These findings indicate the presence of a single phosphorylation site in the catalytic domain of clostridial neurotoxins, and that its covalent modification primarily modulates the protein thermostability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号