首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work has suggested that myelin basic proteins are phosphorylated prior to their appearance in the myelin sheath (Ulmer, J. B. and Braun, P. E. (1984) Dev. Neurosci. 6, 345-355). In order to corroborate this finding we have examined the phosphorylation of myelin basic proteins in rat brain cell cultures containing 14-17% oligodendrocytes. Incorporation of 32P into the 14-, 17-, 18.5-, and 21.5-kDa myelin basic proteins was observed in cells incubated with 32P at 7, 14, and 21 days in culture. Myelin basic proteins in 14-day cells incorporated 32P linearly until at least 120 min after the addition of isotope. The apparent half-life of myelin basic protein phosphate groups was determined to be approximately 80 min in pulse-chase experiments. However, this value may be an overestimation due to the presence of significant levels of acid-soluble radioactivity in the cells throughout the chase period. The presence of dibutyryl cAMP or 8-bromo-cAMP in the incubation medium substantially inhibited the incorporation of 32P into the myelin basic proteins at all time points studied. The presence of dibutyryl cAMP in the chase medium in pulse-chase experiments resulted in an increase in the turnover rate of [32P] phosphate in the myelin basic proteins. These results indicate that cAMP decreases the phosphorylation state of myelin basic proteins in oligodendrocytes by inhibiting the phosphorylation and/or stimulating the dephosphorylation of myelin basic proteins.  相似文献   

2.
Myelin from developing rat brain (8–44 day-old rat) was incubated in vitro with [-32P]ATP to determine how many basic proteins were phosphorylated. Myelin proteins were separated by polyacrylamide gel electrophoresis and transferred to nitrocellulose sheets. The nitrocellulose sheets were stained with antisera to human basic protein by the immunoblot technique. Five basic proteins with molecular weights of 23K, 21.5K, 18.5K, 17K, and 14K were distinctly immunostained. These basic proteins were found to be phosphorylated when the same nitrocellulose sheets were exposed to x-ray film. The in vitro phosphorylation of 23K and 21.5K basic proteins appear to decrease with maturation of the brain. The result of this study suggests that intense phosphorylation of various forms of basic proteins, in particular 23K and 21.5K basic proteins, during the initial stages of myelin formation, may play a pivotal role in the compaction of myelin membrane.  相似文献   

3.
Detection of G Proteins in Purified Bovine Brain Myelin   总被引:5,自引:5,他引:0  
Following a previous report on detection of muscarinic receptors in myelin with the implied presence of G proteins, we now demonstrate by more direct means the presence of such proteins and their quantification. Using [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) as the binding ligand, purified myelin from bovine brain was found to contain approximately half the binding activity of whole white matter (138 +/- 9 vs. 271 +/- 18 pmol/mg of protein). Scatchard analysis of saturation binding data revealed two slopes, a result suggesting at least two binding populations. This binding was inhibited by GTP and its analog but not by 5'-adenylylimidodiphosphate [App(NH)p], GMP, or UTP. Following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) of myelin proteins and blotting on nitrocellulose, [alpha-32P]GTP bound to three bands in the 21-27-kDa range in a manner inhibited by GTP and GTP gamma S but not App(NH)p. ADP-ribosylation of myelin with [32P]NAD+ and cholera toxin labeled a protein of 43 kDa, whereas reaction with pertussis toxin labeled two components of 40 kDa. Cholate extract of myelin subjected to chromatography on a column of phenyl-Sepharose gave at least three major peaks of [35S]GTP gamma S binding activity. SDS-PAGE and immunoblot analyses of peak I indicated the presence of Go alpha, Gi alpha, and Gs alpha. Further fractionation of peak II by diethyl-aminoethyl-Sephacel chromatography gave one [35S]GTP gamma S binding peak with the low-molecular-mass (21-27 kDa) proteins and a second showing two major protein bands of 36 and 40 kDa on SDS-PAGE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Evidence presented demonstrates a covalent attachment of a phospholipid to bovine myelin basic protein. Partial characterization of the phospholipid moiety was performed on myelin basic protein obtained from 32P-phosphorylated whole myelin that was first delipidated by two ether/ethanol (3:2 v/v) extractions, ether extraction, and acetone extraction and then purified by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The myelin basic protein was precipitated with aqueous acetone and treated with proteases. Treatment with carboxypeptidase Y or trypsin for several hours released a lipophilic fragment, which was purified by reverse-phase high-performance liquid chromatography to yield two "lipopeptides". Such lipopeptides were obtained from both the major and minor myelin basic proteins of rat and bovine brain. Treatment with either mild base or phospholipase C removes the lipophilic character of the peptide fragment. The lipophilic fragment is a substrate for phospholipase D, but it does not comigrate on thin-layer chromatography with any 32P-labeled lipid obtained from myelin incubated with [gamma-32P]ATP. Polyphosphoinositides were shown to be released by mild acid treatment of myelin basic protein that had been extracted with organic solvent and then purified by SDS-polyacrylamide gel electrophoresis. Along with the fact that inositol monophosphate was identified in the partial acid hydrolysate of the lipopeptide, we have concluded that polyphosphoinositide (phosphatidylinositol 4-phosphate and/or phosphatidylinositol 4,5-bisphosphate) was the original phospholipid portion of the lipopeptide.  相似文献   

5.
Phosphorylation in vivo of four basic proteins of rat brain myelin   总被引:15,自引:3,他引:12       下载免费PDF全文
When rat brain myelin was examined by sodium dodecyl sulphate/polyacrylamideslab-gel electrophoresis followed by fluorography of the stained gel, it was found that a host of proteins of rat brain myelin were labelled 2, 4 and 24h after the intracerebral injection of H332PO4. Among those labelled were proteins migrating to the positions of myelin-associated glycoprotein, Wolfgram proteins, proteolipid protein, DM-20 and basic proteins. The four basic proteins with mol.wts. 21000, 18000 (large basic protein), 17000 and 14000 (small basic protein) were shown to be phosphorylated after electrophoresis in both acid-urea- and sodium dodecyl sulphate-containing gel systems followed by fluorography. The four basic proteins imparted bluish-green colour, after staining with Amido Black, which is characteristic of myelin basic proteins. The four basic proteins were purified to homogeneity. Fluorography of the purified basic proteins after re-electrophoresis revealed the presence of phosphorylated high-molecular-weight `polymers' associated with each basic protein. The amino acid compositions of the phosphorylated large basic protein and small basic proteins are compatible with the amino acid sequences. Proteins with mol.wts. 21000 and 17000 gave the expected amino acid composition of myelin basic proteins. Radiolabelled phosphoserine and phosphothreonine were identified after partial acid hydrolysis of the four purified basic proteins. The [32P]phosphate–protein bond in the basic protein was stable at an acidic pH but was readily hydrolysed at alkaline pH, as would be expected of phosphoester bonds involving both serine and threonine residues. Double-immunodiffusion analysis demonstrated that the four phosphorylated proteins showed complete homology when diffused against antiserum to a mixture of small and large basic proteins. Since the four basic proteins of rat brain myelin were phosphorylated both in vivo and in vitro it is postulated that the same protein kinase is responsible for their phosphorylation in both conditions.  相似文献   

6.
The susceptibility of proteins in the myelin membrane to proteases was studied. Lyophilized rat brain myelin suspended in water was subjected to controlled proteolytic digestion with pure trypsin (N-tosyl-L-phenylalanine chloromethyl ketone treated, 5 units/mg of myelin), and proteins remaining in the pellet were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Under these conditions, large basic protein (LBP) was completely hydrolyzed in 5-10 min, proteolipid proteins remained largely intact until 60 min, whereas Wolfgram protein (WP) was progressively degraded from 10 min onward with the simultaneous appearance of a new protein band with a molecular weight of 35K. A similar pattern was obtained on treatment with chymotrypsin or subtilisin. The 35K protein band was shown to be derived from WP by its immunological cross-reactivity with WP antibodies. Western blot analysis showed that 35K protein is the only major breakdown product of WP under these conditions. Treatment with higher concentrations of trypsin (greater than 20 units/mg of myelin) resulted in the degradation of all myelin proteins. Essentially all the 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) activity was observed in the myelin pellet after controlled or drastic digestion with trypsin. It is concluded that the major fragment of WP (35K) is located in the hydrophobic milieu of the bilayer, relatively inaccessible to trypsin, whereas a portion (20K) of the WP is exposed to the cytoplasmic side (major dense line), like LBP, and that peptide fragments (less than 14K) that remained in the myelin membrane lipid bilayer after trypsin digestion could exhibit CNP activity.  相似文献   

7.
The immunoblot technique permits the visualization of proteins following their separation on acrylamide gels, transfer to cellulose nitrate sheets and subsequent staining with antiserum. We have utilized this technique to demonstrate the presence of four basic proteins in rat PNS myelin with molecular weights of 21K, 18K, 17K, and 14K. Similarly, we demonstrated the presence of two basic proteins in rabbit PNS myelin (molecular weights of 21K and 18K). Exposure of the immunostained cellulose nitrate strips to X-ray film revealed the phosphorylation of four and two basic proteins in rat and rabbit PNS myelin, respectively. These basic proteins were present in the CNS myelin of the two species and were also phosphorylated. Because of the sensitivity of the immunoblot technique, it was also possible for us to visualize the P2 protein in both rat and rabbit PNS myelin.  相似文献   

8.
Abstract— —The synthesis of myelin proteins has been studied in the grey and white matter slices of developing rat brain by measuring the incorporation of [3H]lysine and [14C]arginine into polypeptide. The incorporation was sensitive to cycloheximide and puromycin at 1 mM concentration. Developing rat optic nerve slices, free of retinal ganglion cells, were able to synthesize myelin basic and proteolipid proteins, but rat retinal preparation failed to synthesize myelin basic protein. Rabbit retinae were able to synthesize myelin basic and proteolipid proteins. Significant activity of the myelin marker enzyme 2',3'-cyclic nucleotide-2'-phosphodiesterase has been found in the rabbit retina but not in rat retina. The results presented in this communication suggest that myelin proteins in the rat CNS are synthesized by the oligodendroglial cells and that neurons probably do not participate.  相似文献   

9.
The binding of calmodulin to myelin basic protein and histone H2B.   总被引:4,自引:1,他引:3       下载免费PDF全文
1. A calmodulin-binding protein of apparent mol.wt. 19 000 has been purified from chicken gizzard. Similar proteins have been isolated from bovine uterus, rabbit skeletal muscle and rabbit liver. 2. These proteins migrated as an equimolar complex with bovine brain calmodulin on electroporesis on polyacrylamide gels in the presence of Ca2+ and 6M-urea. The complex was dissociated in the presence of EGTA. 2. The chicken gizzard calmodulin-binding protein has been shown to be identical with chicken erythrocyte histone H2B on the basis of partial amino acid sequence determination. 4. The calmodulin-binding proteins of apparent mol.wt. 22 000 isolated previously from bovine brain [Grand & Perry (1979) Biochem. J. 183, 285-295] has been shown, on the basis of partial amino-acid-sequence determination, to be identical with myelin basic protein. 5. The activation of bovine brain phosphodiesterase by calmodulin is inhibited by excess bovine uterus calmodulin-binding protein (histone H2B). 6. The phosphorylation of myelin basic protein by phosphorylase kinase is partially inhibited, whereas the phosphorylation of uterus calmodulin-binding protein (histone H2B) is unaffected by calmodulin or troponin C. 7. The subcellular distribution of myelin basic protein and calmodulin suggests that the two proteins do not exist as a complex in vivo.  相似文献   

10.
The presence of a protein kinase capable of phosphorylating endogenous as well as exogenously added myelin basic proteins has been demonstrated in a myelin-like membrane fraction isolated from reaggregating and surface adhering, primary cultures of cells dissociated from embryonic mouse brain. Only the large and small components of myelin basic proteins were found to be phosphorylated when myelin-like membrane fraction was incubated with [-32P]ATP. The protein kinase endogenous to the myelin-like membrane fraction was mainly of the cyclic AMP independent type. There was very little cyclic AMP dependent or cyclic GMP dependent protein kinase activities in this myelin-like fraction. Although the myelin basic proteins were the only endogenous proteins phosphorylated, protein kinase of the myelin-like membrane was capable of catalyzing the phosphorylation of exogenous substrates, such as histones.  相似文献   

11.
The previous demonstration that incubation of brain slices with [32P]phosphate brings about rapid tabeling of phosphatidic acid in myelin suggests that the enzyme involved should be present in this specialized membrane. DAG kinase (ATP:1,2-diacyglycerol 3-phosphotransferase, E.C. 2.7.1.107) is present in rat brain homogenate at a specific activity of 2.5 nmol phosphatidic acid formed/min/mg protein, while highly purified myelin had a much lower specific activity (0.29 nmol/min/mg protein). Nevertheless, the enzyme appears to be intrinsic to this membrane since it can not be removed by washing with a variety of detergents or chelating agents, and it could not be accounted for as contamination by another subcellular fraction. Production of endogenous, membrane-associated, diacylglycerol (DAG) by PLC (phospholipase C) treatment brought about translocation from soluble to particulate fractions, including myelin. Another level of control of activity involves inactivation by phosphorylation; a 10 min incubation of brain homogenate with ATP resulted in a large decrease in DAG kinase activity in soluble, particulate and myelin fractions.  相似文献   

12.
Oxidation of low density lipoprotein increases its atherogenic potential. During oxidation there is an extensive conversion of lecithin to lysolecithin. In rat aortic smooth muscle cells, 2-25 micrograms/ml lysolecithin elevated cytosolic calcium concentration up to 560%. Lysolecithin (10-20 micrograms/ml) increased [3H]thymidine incorporation from 15 cpm/mg cell protein (controls) up to 189 cpm/mg cell protein. Lysolecithin (10 micrograms/ml) potentiated the PDGF-induced (50 ng/ml) [3H]thymidine incorporation up to 6.3 times. The results indicate that lysolecithin could induce mechanisms, by which oxidized low density lipoproteins could promote cell growth and thus contribute to atherosclerosis.  相似文献   

13.
The metabolism of myelin undergoing breakdown as a result of edema induced by chronic administration of triethyl tin (TET) dissolved in the drinking water (10 mg/l.) was examined. The spinal cord showed more edema and loss of myelin than the brain. Uptake in vitro of [1-14C]acetate into myelin lipids of slices of brain or spinal cord from TET-treated rats was depressed until 4–5 weeks after the beginning of the regime, then rose to above normal levels. The uptake of [l-14C]leucine into myelin protein rose within several weeks of TET treatment to levels averaging over 300 per cent of normal and remained high even after the TET was removed. The high levels of [l-14C]leucine incorporation were inhibited by cycloheximide and were not explained by an increase in the size of the free amino acid pool. The three classes of myelin proteins, basic, proteolipid protein, and Wolfgram protein shared in the increased incorporation. Spinal cord myelin showed the greatest metabolic response, brain stem myelin less, and myelin from the forebrain was minimally affected by the TET treatment. Myelin prelabelled by intracisternal injection of [l-14C]acetate and [l-14C]leucine before the onset of TET administration showed faster turnover in myelin proteins in relation to the myelin lipids than the control in the most severely affected animals, but not in others less affected. A ‘floating fraction’ was observed floating on 10.5% (w/v) sucrose during the myelin purification. This fraction showed metabolic characteristics typical of myelin, and myelin-labelling studies at various stages of the animal's development showed it to be derived from recently synthesized myelin. The floating fraction from the brain contained less cerebroside and more lecithin than myelin, while the spinal cord floating fraction composition was much like that of myelin. The floating fractions contained less protein typical of myelin (basic and proteolipid protein) and more highmolecular-weight protein which may have been derived from contaminating microsomes. The floating fraction was presumed to be partially deproteinated myelin. The use of TET-treatment as model for demyelination as a result of edema and proceeding in the absence of macrophages is discussed.  相似文献   

14.
Effects of monensin on posttranslational processing of myelin proteins   总被引:13,自引:11,他引:2  
Rat brain slices were incubated with [3H]palmitic acid and [14C]glycine to label the lipid and protein moieties, respectively, of myelin proteolipid protein (PLP). The effects of monensin on posttranslational processing of proteins were examined by measuring the appearance of [14C]glycine- and [3H]palmitate-labeled proteins in myelin and myelin-like fractions. At 0.01 and 0.10 microM, monensin did not appreciably affect total lipid or protein synthesis; higher concentrations caused increased inhibition. Monensin at 0.10 microM markedly decreased the appearance of [14C]glycine-labeled PLP in myelin, but had little effect on the 14C basic proteins or the incorporation of [3H]palmitic acid into total or myelin PLP. The same relative effect was apparent at higher monensin concentrations. In the myelin-like fraction, monensin at 0.10 microM also depressed entry of [14C]glycine into protein comigrating with PLP, and again had no effect on incorporation of [3H]palmitic acid. In addition, monensin increased the [3H]palmitate label associated with two high-molecular-weight proteins in the myelin-like fraction with no concomitant increase in [14C]glycine label.  相似文献   

15.
Substantial amounts of ATP.Mg-dependent phosphorylase phosphatase (Fc. M) and its activator (kinase FA) were identified and extensively purified from pig brain, in spite of the fact that glycogen metabolism in the brain is of little importance. The brain Fc.M was completely inactive and could only be activated by ATP.Mg and FA, isolated either from rabbit muscle or pig brain. Kinetical analysis of the dephosphorylation of endogenous brain protein indicates that Fc.M could dephosphorylate 32P-labeled myelin basic protein (MBP) and [32P]phosphorylase alpha at a comparable rate and moreover, this associated MBP phosphatase activity was also strictly kinase FA/ATP.Mg-dependent, demonstrating that MBP is a potential substrate for Fc.M in the brain. By manipulating MBP and inhibitor-2 as specific potent phosphorylase phosphatase inhibitors, we further demonstrate that 1) Fc.M contains two distinct catalytic sites to dephosphorylate different substrates, and 2) brain MBP may be a physiological trigger involved in the regulation of protein phosphatase substrate specificity in mammalian nervous tissues.  相似文献   

16.
—We studied the incorporation of radioactivity into individual proteins of myelin by sodium dodecyl sulfate polyacrylamide gel electrophoresis after the injection of [3H]tryptophan into the right eye of developing rabbits. We found that the specific activity of basic protein (c.p.m./mg of basic protein) and the specific activity of DM-20 and proteolipid protein (c.p.m./mg total myelin protein applied to the gel) did not approach the ratio predicted by decussation of the fibres of the rabbit optic nerve. The specific activity of Wolfgram protein, however, approached an expected ratio of 15:1. We therefore concluded that myelin basic protein, DM-20 and proteolipid protein were probably not synthesized in retinal ganglion cells.  相似文献   

17.
Brain slices obtained from the forebrains of adult female rats were incubated with [32P]phosphate and [3H]glycerol for 60 min, and lipids extracted and analyzed by TLC. The 32P in brain slice lipids was primarily in polyphosphoinositides, phosphatidylinositol (PI), and phosphatidate (PA). Distribution of the 32P-labeled lipids in isolated myelin was biased toward PA, 38%, relative to 16% in whole tissue slice lipids. About 33% of the total labeled PA in brain slices was accounted for by that in myelin. On a per milligram protein basis, PA labeling in myelin is about 2.5-fold greater than that of whole brain slice. Since incorporation of [3H]glycerol (indicative of synthesis by the de novo synthetic pathway) was at very low levels, we conclude that [32P]phosphate entered into myelin PA primarily through a pathway involving phospholipase C activity. Much of the production of PA relates to hydrolysis of phosphoinositides, yielding diacylglycerol which is then phosphorylated within myelin. The distribution of label among the inositol-containing lipids suggests that only a fraction of the myelin polyphosphoinositides serve as substrate for rapid diglyceride production. In the presence of 10 mM acetylcholine (ACh) there was a 20-60% stimulation of [32P]phosphate incorporation into PA and PI of brain slice lipids and purified myelin. Stimulation by ACh was blocked by atropine. The observed increase in the 32P/3H ratio, relative to controls, indicated that for both total lipids and myelin lipids there was selective stimulation of a phospholipase C-dependent cycle relative to de novo biosynthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Abstract: Proteins of the paniculate fraction of sciatic nerve of rats ranging from 1 to 55 days of age were analyzed by polyacrylamide gel electrophoresis. The major myelin protein, P0, could not be detected at 1 day of age, but by 10 days it comprised from 15 to 20% of the particulate protein, the same proportion as in adult rats. Growth of nerve continued throughout the period studied. Rat sciatic nerves were incubated with [32P]orthophosphate or [3H]fucose. Particulate matter proteins from sciatic nerve (and in certain cases proteins of myelin purified from sciatic nerve) were separated by polyacrylamide disc gel electrophoresis and the distribution of protein and of radioactivity along the gels was determined. [32P]Phosphate appeared to label all myelin proteins. Labeling with fucose was more specific; myelin basic proteins were not fucosylated. A developmental study showed that sciatic nerves from 2-day-old rats could incorporate radioactive fucose and [32P]-phosphate into several proteins at the P0 region of polyacrylamide gels. Specific radioactivity of [3H]fucose in P0 protein was highest in preparations from 5-day-old rats and declined by 80% over the next 5 days as it was diluted by accumulating myelin. The specific radioactivity of incorporated [32P] phosphate was high at the early age points and declined as a result of the accumulation of compact myelin. The results indicate an association of fucosylation and/or phosphorylation with some step in the formation of myelin.  相似文献   

19.
As a first step in determining the molecular mechanism of membrane fusion stimulated by GTP in rough endoplasmic reticulum (RER), we have looked for GTP-binding proteins. Rough microsomes from rat liver were treated for the release of ribosomes, and the membrane proteins were separated by SDS/polyacrylamide-gel electrophoresis. The polypeptides were then blotted on to nitrocellulose sheets and incubated with [alpha-32P]GTP [Bhullar & Haslam (1987) Biochem. J. 245, 617-620]. A doublet of polypeptides (23 and 24 kDa) was detected in the presence of 2 microM-MgCl2. Binding of [alpha-32P]GTP was blocked by 1-5 mM-EDTA, 10-10,000 nM-GTP or 10 microM-GDP. Either guanosine 5'-[gamma-thio]triphosphate or guanosine 5'-[beta gamma-imido]triphosphate at 100 nM completely inhibited binding, but ATP, CTP or UTP at 10 mciroM did not. Pretreatment of microsomes by mild trypsin treatment (0.5-10 micrograms of trypsin/ml, concentrations known not to affect microsomal permeability) led to inhibition of [alpha-32P]GTP binding, suggesting a cytosolic membrane orientation for the GTP-binding proteins. Two-dimensional gel-electrophoretic analysis revealed the 23 and 24 kDa [alpha-32P]GTP-binding proteins to have similar acid isoelectric points. [alpha-32P]GTP binding occurred to similar proteins of rough microsomes from rat liver, rat prostate and dog pancreas, as well as to a 23 kDa protein of rough microsomes from frog liver, but occurred to distinctly different proteins in a rat liver plasma-membrane-enriched fraction. Thus [alpha-32P]GTP binding has been demonstrated to two low-molecular-mass (approx. 21 kDa) proteins in the rough endoplasmic reticulum of several varied cell types.  相似文献   

20.
Soluble ovarian extracts were incubated with protein kinase effectors in the presence of [gamma 32P]ATP and proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Autoradiograms revealed phosphorylation of an ovarian Mr = 80,000 substrate in the presence of EGTA ([ethylenebis(oxyethylenenitrilo)]tetraacetic acid), phosphatidylserine and 1,2-diolein. In contrast to a classical response pattern to C-kinase effectors, the ovarian Mr = 80,000 phosphorylation was inhibited by 2 x 10(-7) M or greater free Ca2+. The ovarian Mr = 80,000 substrate was distinguished from the myristoylated acidic Mr = 80,000 C-kinase substrate of brain tissue on the basis of heat stability and phosphorylative response to effectors. Phosphorylation of the exogenous substrate myelin basic protein by DEAE-resolved ovarian kinase showed the variant effector dependence, maximal in the presence of EGTA, phosphatidylserine and 1,2-diolein. Finally, the effect of Ca2+ on ovarian Mr = 80,000 [32P]phosphate content could not be accounted for by post-phosphorylation activities, or by DEAE-resolvable or hydroxylapatite-resolvable inhibitory activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号