首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural Occurrence of Mycotoxins in Staple Cereals from Ethiopia   总被引:1,自引:0,他引:1  
The occurrence of mycotoxins in barley, sorghum, teff (Eragrostis tef) and wheat from Ethiopia has been studied. Samples were analyzed for aflatoxin B1 (AFB1), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol (NIV) and zearalenone (ZEN) using high performance liquid chromatography (HPLC) and for fumonisins (FUM) using enzyme linked immunosorbent assay (ELISA). AFB1 and OTA were detected in samples of all the four crops. AFB1 was detected in 8.8% of the 352 samples analyzed at concentrations ranging from trace to 26 μg kg−1. OTA occurred in 24.3% of 321 samples at a mean concentration of 54.1 μg kg−1 and a maximum of 2106 μg kg−1. DON occurred in barley, sorghum and wheat at 40–2340 μg kg−1 with an overall incidence of 48.8% among the 84 mainly ‘suspect’ samples analyzed; NIV was co-analyzed with DON and was detected at 40 μg kg−1 in a wheat sample and at 50, 380, and 490 μg kg−1 in three sorghum samples. FUM and ZEN occurred only in sorghum samples with low frequencies at concentrations reaching 2117 and 32 μg kg−1, respectively. The analytical results indicate higher mycotoxin contamination in sorghum, which could be related to the widespread storage of sorghum grain in underground pits leading to elevated seed moisture contents. This is the first report on the occurrence of OTA in teff.  相似文献   

2.
Potentially poplars and willows may be used for the in situ decontamination of soils polluted with Cd, such as pasturelands fertilised with Cd-rich superphosphate fertiliser. Poplar (Kawa and Argyle) and willow (Tangoio) clones were grown in soils containing a range (0.6–60.6 μg g−1 dry soil) of Cd concentrations. The willow clone accumulated significantly more Cd (9–167 μg g−1 dry matter) than the two poplar clones (6–75 μg g−1), which themselves were not significantly different. Poplar trees (Beaupré) sampled in situ from a contaminated site near the town of Auby, Northern France, were also found to accumulate significant quantities (up to 209 μg g−1) of Cd. The addition of chelating agents (0.5 and 2 g kg−1 EDTA, 0.5 g kg−1 DTPA and 0.5 g kg−1NTA) to poplar (Kawa) clones caused a temporary increase in uptake of Cd. However, two of the chelating agents (2 g kg−1 EDTA and 0.5 g kg−1 NTA) also resulted in a significant reduction in growth, as well as abscission of leaves. If the results obtained in these pot experiments can be realised in the field, then a single crop of willows could remove over 100 years worth of fertiliser-induced Cd contamination from pasturelands. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Artificially inseminated eggs of feral North Sea whiting (Merlangius merlangus) were incubated in the laboratory in order to determine reproductive success. After incubation, two measures for reproductive success, total hatch and viable hatch, were determined and correlated with chlorinated hydrocarbon residues in the respective ovaries. From their specific toxicities and the sum of all determined chlorinated hydrocarbon contaminants, a contamination factor (CF) was calculated. Significant negative correlations were found between total hatch and DDT, including its metabolites (ΣDDT), dieldrin and the CF. ΣDDT and the CF were also negatively correlated with viable hatch. A threshold value of ovary contamination above which impairment of reproductive success was likely to occur was set at > 200 μg kg−1 wet wt. for ΣPCB, > 20 μg kg−1 wet wt. for ΣDDT and > 10 μg kg−1 wet wt. for dieldrin.  相似文献   

4.
This study was designed to identify rhizobial strains specific to greengram expressing higher tolerance against insecticides, fipronil and pyriproxyfen, and synthesizing plant growth regulators even amid insecticide-stress. Of the 50 bradyrhizobial isolates, the Bradyrhizobium sp. strain MRM6 showed tolerance up to 1,600 μg mL−1 against each of fipronil and pyriproxyfen. The tolerant Bradyrhizobium sp. (vigna) produced plant growth promoting substances in substantial amounts, both in the presence and absence of insecticides. The strain MRM6 was further used to investigate its impact on greengram grown in soils treated with 200 (the recommended dose), 400 and 600 μg kg−1 soil of fipronil and 1,300 (the recommended dose), 2,600 and 3,900 μg kg−1 soil of pyriproxyfen. Fipronil at 600 μg kg−1 soils and pyriproxyfen at 3,900 μg kg−1 soils had greatest toxic effects and decreased plant biomass, symbiotic efficiency, nutrient uptake and seed yield of greengram plants. The Bradyrhizobium sp. (vigna) inoculant when used with fipronil and pyriproxyfen significantly increased the measured parameters compared to the plants grown in soils treated solely with the same concentration of each insecticide. This study inferred that the Bradyrhizobium sp. (vigna) strain MRM6 may be exploited as bio-inoculant to increase the productivity of greengram exposed to insecticide-stressed soils.  相似文献   

5.
Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.  相似文献   

6.
Pearl millet is increasingly being grown as a premium-value grain for the recreational wildlife and poultry industries in the southern US. We conducted three experiments to assess grain mold development in storage conditions typically encountered in the region of production. Variables included production year, temperature, relative humidity, atmosphere, and grain moisture content. In the first experiment, grain was stored for 9 weeks at 20 or 25°C and maintained at 86% or 91% relative humidity (r.h.). In the second experiment, grain was stored for 9 weeks at 20 or 25°C in either air (aerobic) or N2 (anaerobic), and maintained at 100% r.h. In the third experiment, high-moisture grain was stored for 3 weeks at 20 or 25°C and maintained at 100% r.h. Grain was sampled at weekly intervals and plated to determine changes in fungal frequency. Fungi isolated included Fusarium chlamydosporum (19% of grain), Curvularia spp. (14%), F. semitectum (16%), Alternaria spp. (9%), Aspergillus flavus (8%), “Helminthosporium”-type spp. (6%), and F. moniliforme sensu lato (3%). Year of grain production significantly affected isolation frequency of fungi. Isolation frequencies from low-moisture grain were rarely affected by temperature, relative humidity, or atmosphere treatments, but was affected by storage duration for some fungi. Changes in isolation of toxigenic fungi occurred in high-moisture grain. Isolation frequency of F. chlamydosporum increased in grain stored at 86% and 91% r.h. Incidence of A. flavus increased in high-moisture grain treatments, particularly at 25°C. Incidence of deoxynivalenol was not affected by storage treatment. Low concentrations of nivalenol were detected in most grain incubated at 100% r.h. Zearalenone was detected only when grain moisture content was 20–22%. Aflatoxin contamination averaged 174 ng g−1 over all treatments, and increased up to 798 ng g−1 in high-moisture grain at stored at 25°C.  相似文献   

7.
Hydrolysis of organic phosphates by corn and soybean roots   总被引:1,自引:0,他引:1  
Because of the importance of organic phosphates as sources of P for plants, this work was performed to study the hydrolysis of nine organic phosphates by sterile, intact corn (Zea mays L.) and soybean (Glycine max L.) roots. Results showed that the rates of hydrolysis ofp-nitrophenyl phosphate (PNP) in buffered solutions by roots of three varieties of corn and three varieties of soybean ranged from 13 to 22 μmol PO4−P g−1 root h−1 and from 2.1 to 2.2 μmol PO4−P 0.1 g−1 root h−1, respectively. The average rate of hydrolysis of PNP in nonbuffered solutions was 2- to 3-fold lower for corn roots and 6- to 10-fold lower for soybean roots as compared with those obtained with buffered solutions. The orthophosphate released from hydrolysis of organic P compounds in buffered solutions during a 48-h incubation of corn roots showed that the maximum rate of hydrolysis of PNP was 4 to 6 times greater than the commonly used substrates: α- and β-glycerophosphates, phenolphthalein diphosphate, and glucose-6-phosphate. The rates of hydrolysis of glucose-6-phosphate and glucose-1-phosphate were similar and about 6- to 12-fold lower than that of PNP. Phosphoethanolamine and phosphocholine were hydrolyzed slightly, ando-carboxyphenyl phosphate was not hydrolyzed. The rates of hydrolysis of organic P compounds in nonbuffered solutions by corn and soybean roots were 1 to 3 and 1 to 10 times lower than those in buffered solutions, respectively. The trends in rates of hydrolysis by soybean roots of buffered organic P substrates were similar to those observed with corn roots, with the exception of glucose-1-phosphate and phosphoethanolamine.  相似文献   

8.
In this study, the effects of inositol addition on expression of the MAL gene encoding maltase and phosphatidylinositol (PI) biosynthesis in Schizosaccharomyces pombe (a naturally inositol-requiring strain) were examined. We found that specific maltase activity was at its maximum when the concentration of added inositol reached 6 μg ml−1 in a synthetic medium containing 2.0% (w/v) glucose. When the concentration of added inositol was 1 μg ml−1 in the medium, repression of MAL gene expression occurred at glucose concentration higher than 0.2% (w/v). However, when S. pombe was cultured in the synthetic medium containing 6 μg ml−1, repression of maltase gene expression occurred only at initial glucose concentration above 1.0% (w/v). More mRNA encoding maltase was detected in the cells grown in the medium with 6 μg ml−1 inositol than in those grown in the same medium with 1 μg ml−1 inositol. These results demonstrate that higher inositol concentrations in the synthetic medium could derepress MAL gene expression in S. pombe. PI content of the yeast cells grown in the synthetic medium with 6 μg ml−1 of inositol was higher than that of the yeast cells grown in the same medium with 1 μg ml−1 of inositol. This means that PI may be involved in the derepression of MAL gene expression in S. pombe.  相似文献   

9.
This study describes the application of the laser photoacoustic spectroscopy (PAS) for quantification of total carotenoids (TC) in corn flours and sweetpotato flours. Overall, thirty-three different corn flours and nine sweetpotato flours were investigated. All PAS measurements were performed at room temperature using 488-nm argon laser radiation for excitation and mechanical modulation of 9 and 30 Hz. The measurements were repeated within a run and within several days or months. The UV–Vis spectrophotometry was used as the reference method. The concentration range that allows for the reliable analysis of TC spans a region from 1 to 40 mg kg−1 for corn flours and from 9 to 40 mg kg−1 for sweetpotato flours. In the case of sweetpotato flours, the quantification may extend even to 240 mg kg−1 TC. The estimated detection limit values for TC in corn and sweetpotato flours were 0.1 and 0.3 mg kg−1, respectively. The computed repeatability (n = 3–12) and intermediate precision (n = 6–28) RSD values at 9 and 30 Hz are comparable: 0.1–17.1% and 5.3–14.7% for corn flours as compared with 1.4–9.1% and 4.2–23.0% for sweetpotato flours. Our results show that PAS can be successfully used as a new analytical tool to simply and rapidly screen the flours for their nutritional potential based on the total carotenoid concentration.  相似文献   

10.
This paper gives the results from four-year field experiments on compost application, added at the maximum rate allowed by Italian legislation (30 t/ha/y). The purpose of the experiment was to evaluate any eventual heavy metal accumulation in soil and corn plants. Cadmium in corn plants increased particularly in the roots from 0.22 mg kg−1 to 1.31 mg kg−1, concentration of Zn and Cu increased in grains, from 26.8 to 35.8 and from 2.4 to 4.2 mg kg−1 respectively. Relevant increase in the roots was detected for Zn from 34.6 to 146.8 mg kg−1. Only in the 4th year Ni concentration increases in the root portion while the content of Pb and Cr in corn was generally unaffected by the compost application. Heavy metals in the soil determined by a sequential chemical extraction, indicated that extractability changed with time. A certain increase was found from the beginning to the end of the experiment particularly for Zn, from 23.3 mg kg−1 to 45.1 mg kg−1 in extractable forms. Nevertheless the extractable amounts are rather small in respect to the total heavy metal content of compost.  相似文献   

11.
Critical levels of selenium in raya (Brassica juncea Czern L.), maize (Zea mays L.), wheat (Triticum aestivum L.) and rice (Oryza sativa L.) were worked out by growing these crops in an alkaline silty loam soil treated with different levels of selenite-Se ranging from 1 to 25 μg g−1 soil. Significant decrease in dry matter yield was observed above a level of 5 μg Se g−1 soil in raya and maize; 4 μg Se g−1 soil in wheat and 10 μg Se g−1 soil in rice shoots. The critical level of Se in plants above which significant decrease in yield would occur was found to be 104.8 μg g−1 in raya, 76.9 μg g−1 in maize, 41.5 μg g−1 in rice and 18.9 μg g−1 in wheat shoots. Significant coefficients of correlation were observed between Se content above the critical level and dry matter yield of raya as well as rice (r = −0.99, P ≤ 0.01), wheat (r = −0.97, P ≤ 0.01) and maize ((r = −0.96, P ≤ 0.01). A synergistic relationship was observed between S and Se content of raya (r = 0.96, P ≤ 0.01), wheat (r = 0.89, P ≤ 0.01), rice (r = 0.85, P ≤ 0.01) and maize (r = 0.84, P ≤ 0.01). Raya, maize and rice absorbed Se in levels toxic for animal consumption (i.e. > 5 mg Se kg−1) when the soil was treated with more than 1.5 μg Se g−1. In case of wheat, application of Se more than 3 μg g−1 soil resulted in production of toxic plants.  相似文献   

12.
This study was designed to identify and compare the Fusarium species of the Gibberella fujikuroi complex on pearl millet (Pennisetum glaucum (L.) R. Br) and corn (Zea mays L.) crops grown in southern Georgia, and to determine their influence on potential fumonisin production. Pearl millet and corn samples were collected in Georgia in 1996, 1997 and 1998. Three percent of the pearl millet seeds had fungi similar to the Fusarium species of the G. fujikuroi species complex. One hundred and nineteen representative isolates visually similar to the G. fujikuroi species complex from pearl millet were paired with mating population A (Fusarium verticillioides (Sacc.) Nirenberg), mating population D (F. proliferatum (Matsushima) Nirenberg) and mating population F (F. thapsinum (Klittich, Leslie, Nelson and Marasas) tester strains. Successful crosses were obtained with 50.4%, 10.1% and 0.0% of these isolates with the A, D and F tester strains, while 39.5 of the isolates did not form perithecia with any tester strains. Two of the typical infertile isolates were characterized by DNA sequence comparisons and were identified as Fusarium pseudonygamai (Nirenberg and ODonnell), which is the first known isolation of this species in the United States. Based on the pattern of cross-compatibility, conidiogenesis, colony characteristics and media pigmentation, a majority of the infertile isolates belong to this species. Fumonisins FB1 and FB2 were not detected in any of the 81 pearl millet samples analyzed. The species of the G. fujikuroi species complex were dominant in corn and were isolated from 84%, 74% and 65% of the seed in 1996, 1997 and 1998, respectively. Representative species of the G. fujikuroi species complex were isolated from 1996 to 1998 Georgia corn survey (162, 104 and 111 isolates, respectively) and tested for mating compatibility. The incidence of isolates belonging to mating population A (F. verticillioides) ranged from 70.2% to 89.5%. Corn survey samples were assayed for fumonisins, and 63% to 91% of the 1996, 1997 and 1998 samples were contaminated. The total amount of fumonisins in the corn samples ranged from 0.6 to 33.3 g/g.  相似文献   

13.
Rhodobacter sphaeroides grew in the presence of up to 43 μM chromate and reduced hexavalent chromium to the trivalent form under both aerobic and anaerobic conditions. Reduced chromium remained in the external medium. Reductase activity was present in cells of R. sphaeroides independent of whether chromate was present or not in the growth medium. The reducing activity was found in the cytoplasmic cell fraction and was dependent on NADH. The chromate-reducing enzyme was purified by anion exchange, hydroxyapatite and hydrophobic interaction chromatography, and gel filtration. The molecular weight of the enzyme was 42 kDa as determined by gel filtration. The optimum of the reaction is at pH 7.0 and 30°C. The enzyme activity showed a hyperbolic dependence on the concentrations of both substrates, NADH and chromate, with a maximum velocity at 0.15 mM NADH. A K m of 15±1.3 μM CrO4 2− and a V max of 420±50 μmol min−1 mg protein−1 was determined for the enzyme isolated from anaerobically grown cells and 29±6.4 μM CrO4 2− and 100±9.6 μmol CrO4 2− min−1 mg protein−1 for the one from aerobically grown ones. Journal of Industrial Microbiology & Biotechnology (2000) 25, 198–203. Received 05 January 2000/ Accepted in revised form 27 May 2000  相似文献   

14.
ABE production from corn: a recent economic evaluation   总被引:2,自引:0,他引:2  
This article details an economic assessment of butanol production from corn using the newly developed hyper-butanol-producing strain of Clostridium beijerinckii BA101. Butanol is produced in batch reactors and recovered by distillation. For a plant with 153,000 metric tons of acetone, butanol, and ethanol (ABE) production capacity, the production equipment cost and total working capital cost is US$33.47×106 and US$110.46×106, respectively. Based on a corn price (C p) of US$79.23 ton−1 (US$2.01 bushel−1), an ABE yield of 0.42 (g ABE/g glucose) butanol price is projected to be US$0.34 kg−1. An improved yield of 0.50 will reduce this price to US$0.29 kg−1. Assumptions, such as by-product credit for gases and complete conversion of corn steep liquor (CSL) to fermentation by-products, have been taken into consideration. An increased price of corn to US$197.10 ton−1 would result in a butanol price of US$0.47 kg−1. A grass-rooted plant would result in a butanol price of US$0.73 kg−1 (C p US$79.23 ton−1). In a worst case scenario, the price of butanol would increase to US$1.07 kg−1 (C p 197.10 ton−1 for a grass-rooted plant and assuming no credit for gases). This is based on the assumption that corn price would not increase to more than US$197.10 ton−1. Journal of Industrial Microbiology & Biotechnology (2001) 27, 292–297. Received 12 September 2000/ Accepted in revised form 12 January 2001  相似文献   

15.
Enterotoxin production is a key factor in Bacillus cereus food poisoning. Herein, the effect of the growth rate (μ) on B. cereus toxin production when grown on sucrose was studied and the Hemolytic BL enterotoxin (HBL) and nonhemolytic enterotoxin (Nhe) production by B. cereus was compared according to carbohydrate at μ = 0.2 h−1. The anaerobic growth was carried out on continuous cultures in synthetic medium supplemented with glucose, fructose, sucrose, or an equimolar mixture of glucose and fructose. Concerning the HBL and Nhe enterotoxin production: (1) the highest enterotoxin production has occurred at μ = 0.2 h−1 when growing on sucrose; (2) HBL production was repressed when glucose was consumed and the presence of fructose (alone or in mixture) cancelled glucose catabolite repression; (3) the consumption of sucrose increased Nhe production, which was not affected by the catabolite repression. Furthermore, analysis of the fermentative metabolism showed that whatever the μ or the carbon source, B. cereus used the mixed acid fermentation to ferment the different carbohydrates. The enterotoxin productions by this strain at μ = 0.2 h−1 are highly influenced by the carbohydrates that do not involve any fermentative metabolism changes.  相似文献   

16.
 Pearl millet [Pennisetum glaucum (L.) R.Br.] is a warm-season grass used for food, feed, fodder and forage, primarily in countries of Africa and India but grown around the world. The two most-destructive diseases to pearl millet in the United States are rust (caused by Puccinia substriata var. indica) and pyricularia leaf spot (caused by Pyricularia grisea). Genes for disease resistance to both pathogens have been transferred into agronomically acceptable forage and grain cultivars. A study was undertaken to identify molecular markers for three rust loci and one pyricularia resistance locus. Three segregating populations were screened for RAPDs using random decamer primers and for RFLPs using a core set of probes detecting single-copy markers on the pearl millet map. The rust resistance gene Rr 1 from the pearl millet subspecies P. glaucum ssp. monodii was linked 8.5 cM from the RAPD OP-G8350. The linkage of two RFLP markers, Xpsm108 (15.5 cM) and Xpsm174 (17.7 cM), placed the Rr 1 gene on linkage-group 3 of the pearl millet map. Rust resistance genes from both Tift 89D2 and ICMP 83506 were placed on linkage-group 4 by determining genetic linkage to the RFLP marker Xpsm716 (4.9 and 0.0 cM, respectively). Resistance in ICMP 83506 was also linked to the RFLP marker Xpsm306 (10.0 cM), while resistance in Tift 89D2 was linked to RAPD markers OP-K19350 (8.8 cM) and OP-O8350 (19.6 cM). Fragments from OP-K19 and OP-O8 in the ICMP 83506 population, and Xpsm306 in the Tift 89D2 population, were monomorphic. Only one RAPD marker (OP-D11700, 5.6 cM) was linked to pyricularia leaf spot resistance. Attempts to detect polymorphisms with rice RFLP probes linked to rice blast resistance (Pyricularia oryzae; syn=P. grisea) were unsuccessful. Received: 19 May 1997 / Accepted: 21 October 1997  相似文献   

17.
Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain’s degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (μmax) of 0.158 h−1. The half-maximum rate-associated substrate concentration (Ks) was 45 μM. At pH 8.5 μmax was only 0.05 h−1 and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that μmax with dichlorprop was around 0.2 h−1 at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with μmax of 0.147 h−1 and Ks of 267 μM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 μM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)−2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h−1 at pH 6.8 and up to D = 0.2 h−1 at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.  相似文献   

18.
Summary Cadmium and zinc uptake parameters were determined for intact corn (Zea mays L.) seedlings grown for 15 and 22 in nutrient solutions containing levels of Cd and Zn that were similar to those found in soil solutions. Uptake of both elements was assumed to follow Michaelis-Menten kinetics. Calculations were based on the concentrations of free ionic Cd (Cd2+) and Zn (Zn2+) rather than the total solution concentration. Rates of Zn uptake were measured by determining depletion of Zn for periods of up to 30 h from solutions containing initial concentrations of 1.5 and 10μmol Zn 1−1. Depletion curves suggested that Zn uptake characteristics were similar at both levels of Zn in solution. The Imax for Zn uptake decreased from 550 to 400 pmol m−2 root surface s−1 between 16 and 22 d of growth while Km decreased from 2.2 to 1.5 μmol Zn2+ 1−1. Cadmium uptake parameters were measured by controlling Cd2+ activities in nutrient solution betwen 6.3 to 164 nmol l−1 by continuous circulation of nutrient solution through a mixed-resin system. Imax for Cd uptake was 400 pmol m−2 root surface s−1 at 15 and 22 d of growth. The magnitude of Km increased from 30 to 100 nmol Cd2+ 1−1 during this time period. The Km value suggests that corn is efficient for Cd uptake. The results of these uptake studies are consistent with the observed uptake of Zn and Cd by corn seedlings in soils.  相似文献   

19.
The effect of osmotic stress on cell growth and phenylethanoid glycosides (PeGs) biosynthesis was investigated in cell suspension cultures of Cistanche deserticola Y. C. Ma, a desert medicinal plant grown in west region of China. Various initial sucrose concentrations significantly affected cell growth and PeGs biosynthesis in the suspension cultures, and the highest dry weight and PeGs accumulation reached 15.9 g l−1-DW and 20.7 mg g−1-DW respectively at the initial osmotic stress of 300 mOsm kg−1 where the sucrose concentration was 175.3 mM. Stoichiometric analysis with different combinations of sucrose and non-metabolic sugar (mannitol) or non-sugar osmotic agents (PEG and NaCl) revealed that osmotic stress itself was an important factor for enhancing PeGs biosynthesis in cell suspension cultures of C. deserticola. The maximum PeGs contents of 26.9 and 23.8 mg g−1-DW were obtained after 21 days at the combinations of 87.6 mM sucrose with 164.7 mM mannitol (303 mOsm kg−1) or 20 mM PEG respectively, which was higher than that of C. deserticola cell cultures grown under an initial sucrose concentration of 175.3 mM after 30 days. The stimulated PeGs accumulation in the cell suspension cultures was correlated to the increase of phenylalanine ammonium lyase (PAL) activity induced by osmotic stress.  相似文献   

20.
Nannochloropsis sp. was grown to the exponential phase and transferred to the high CO2 (2,800 μl l−1) and irradiance (100 μmol photons m−2 s−1) condition with different levels of nitrate and phosphate for 72 h, then the photosynthetic activity and inorganic carbon acquisition of the alga were measured. The apparent photosynthetic efficiency (α) of Nannochloropsis sp. decreased with increasing NO3 concentration from 150 to 3,000 μM, and the high nitrate-grown cells showed the lowest levels of light-saturated photosynthetic rate (P m), while the low nitrate-grown cells showed the highest levels of dark respiration rate (R d). The maximal light-saturated photosynthetic rate and the minimal dark respiration rate were seen under the middle nitrate condition. When the nitrate concentration ranged from 150 to 3,000 μM, the affinity for inorganic carbons of Nannochloropsis sp. increased sharply with the increasing NO3 concentration to 300 μM and then decreased significantly. The middle phosphate-grown cells exhibited the highest light-saturated photosynthetic rate and apparent photosynthetic efficiency, however, the affinity for inorganic carbons of Nannochloropsis sp. was the maximum under the low phosphate condition. It was shown that the appropriate nitrogen and phosphorus levels were of vital importance to the photosynthesis of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号