首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deoxycytidylate (dCMP) hydroxymethylase from Escherichia coli infected with a T-4 bacteriophage amber mutant has been purified to homogeneity. It is a dimer with a subunit molecular weight of 28,000. Chemical modification of the homogeneous enzyme with N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) leads to complete loss of enzyme activity. dCMP can protect the enzyme against NEM inactivation, but the dihydrofolate analogues methotrexate and aminopterin alone do not afford similar protection. Compared to dCMP alone, dCMP plus either methotrexate or aminopterin greatly enhances protection against NEM inactivation. DTNB inactivation is reversed by dithiothreitol. For both reagents, inactivation kinetics obey second-order kinetics. NEM inactivation is pH dependent with a pKa for a required thiol group of 9.15 +/- 0.11. Complete enzyme inactivation by both reagents involves the modification of one thiol group per mole of dimeric enzyme. There are two thiol groups in the totally denatured enzyme modified by either NEM or DTNB. Kinetic analysis of NEM inactivation cannot distinguish between these two groups; however, with DTNB kinetic analysis of 2-nitro-5-thiobenzoate release shows that enzyme inactivation is due to the modification of one fast-reacting thiol followed by the modification of a second group that reacts about 5-6-fold more slowly. In the presence of methotrexate, the stoichiometry of dCMP binding to the dimeric enzyme is 1:1 and depends upon a reduced thiol group. It appears that the two equally sized subunits are arranged asymmetrically, resulting in one thiol-containing active site per mole of dimeric enzyme.  相似文献   

2.
1. The amino acid analysis of UDP-glucose dehydrogenase is reported. 2. N-Terminal-group analysis indicates only one type of N-terminal amino acid, methionine, to be present. 3. Peptide ;mapping' in conjunction with the amino acid analysis indicates that the subunits of the enzyme are similar if not identical. 4. The various kinetic classes of thiol group were investigated by reaction with 5,5'-dithiobis-(2-nitrobenzoate). 5. NAD(+), UDP-glucose and UDP-xylose protect the two rapidly reacting thiol groups of the hexameric enzyme. 6. Inactivation of the enzyme with 5,5'-dithiobis-(2-nitrobenzoate) indicates the involvement of six thiol groups in the maintenance of enzymic activity. 7. The pH-dependence of UDP-xylose inhibition of the enzyme was investigated. 8. The group involved in the binding of UDP-xylose to the protein has a heat of ionization of about 33kJ/mol and a pK of 8.4-8.6. 9. It is suggested that UDP-xylose has a cooperative homotropic effect on the enzyme.  相似文献   

3.
Acetimidylation of the amino groups of alcohol dehydrogenase from human and horse liver yields several modified enzyme forms, which differ in electrophoretic mobility and can be separated by ion exchange chromatography, but which are similar in kinetic characteristics. The acetimidylated, as well as the methylated, enzymes from human livers of the normal phenotype have increased activity and larger Michaelis and inhibition constants. These results suggest that the human enzyme has amino groups at the active sites, as was shown previously for the horse enzyme. The variant subunit occuring in the enzyme isolated from atypical human livers does not seem to be activated by acetimidylation, which may indicate that substitution of proline for Ala-230 or modifiction of Lys-228 is sufficient to fully activate the enzyme. Results of product inhibition studies of native and modified human enzymes are consistent with an Ordered Bi Bi mechanism. However, the major isoenzyme of native human liver alcohol, dehydrogenase exhibits nonlinear kinetics over a wide range of ethanol concentrations. This result may indicate that subunits with different kinetic characteristics are present or that there is negative cooperativity between subunits. After chemical modification, the kinetic patterns become linear, suggesting that the mechanism is altered.  相似文献   

4.
1. The inactivation of rat skeletal muscle AMP deaminase by Dnp-F (1-fluoro-2,4-dinitrobenzene) is accompanied by the arylation of thiol, amino and phenolic hydroxyl groups. 2. The number of thiol groups that react with Dnp-F is about 12; this is the number that reacts with Nbs2 [5,5'-dithiobis-(2-nitrobenzoic acid)] and N-ethylmaleimide without loss of enzyme activity, and it appears to be the same thiol groups that all three reagents attack. 3. Dinitrophenylation of these reactive SH groups is not the cause of inactivation, since active N-ethylmaleimide-substituted enzyme is also inactivated by Dnp-F.4. Complete inactivation of the N-ethylmaleimide-treated AMP deaminase occurs when about six tyrosine and two lysine residues are dinitrophenylated. 5. Since the treatment of Dnp-enzyme with 2-mercaptoethanol restores much of the enzyme activity, inactivation of AMP deaminase by Dnp-F is probably largely due to modification of tyrosine residues. 6. The kinetic properties of the Dnp-enzyme indicate that a marked decrease in V occurs only after extensive enzyme modification. The decreased activity after slight inactivation results from modification of Km.  相似文献   

5.
Creatine kinase, from fruit bat breast muscle, has been purified to homogeneity. The mol. wt of the enzyme was estimated to be about 78,000-80,000 with two subunits of 42,500. There are nine thiol residues/mol of the enzyme and two of these react readily with DTNB leading to total inactivation of the enzyme. The metal ion specificity was in order Mg2+ greater than Zn2+ greater than Co2+. Initial velocity and product inhibition studies of the reverse reaction are consistent with sequential reaction but of either rapid equilibrium random or ordered type.  相似文献   

6.
The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase fromEuglena gracilis decays steadily when exposed to agents that induce oxidative modification of cysteine residues (Cu2+, benzofuroxan, disulfides, arsenite, oxidized ascorbate). Inactivation takes place with a concomitant loss of cysteine sulfhydryl groups and dimerization of large subunits of the enzyme. 40% activity loss induced by the vicinal thiol-reagent arsenite is caused by modification of a few neighbor residues while the almost complete inactivation achieved with disulfides is due to extensive oxidation leading to formation of mixed disulfides with critical cysteines of the protein. In most cases oxidative inactivation is also accompanied by an increased sensitivity to proteolysis by trypsin, chymotrypsin or proteinase K. Both enzymatic activity and resistance to proteolysis can be restored through treatment with several thiols (cysteamine, cysteine, dithiothreitol and, more slowly, reduced glutathione). Redox effectors which are thought to regulate the chloroplast activity (NADPH, ferredoxin and thioredoxin) do not reactivate the oxidized enzyme. When ribulose-1,5-bisphoshate carboxylase/oxygenase is incubated with cystamine/cysteamine mixtures having different disulfide/thiol ratio (r), inactivation takes place around r=1.5 while proteolytic sensitization occurs under more oxidative conditions (r=4). It is suggested that oxidative modification may happen in vivo under exceptional circumstances, such as senescence, bleaching or different kinds of stress, leading to enzyme inactivation and triggering the selective degradation of the carboxylase that has been repeatedly observed during these processes.  相似文献   

7.
Isocitrate lyase was purified from Phycomyces blakesleeanus N.R.R.L. 1555(-). The native enzyme has an Mr of 240,000. The enzyme appeared to be a tetramer with apparently identical subunits of Mr 62,000. The enzyme requires Mg2+ for activity, and the data suggest that the Mg2(+)-isocitrate complex is the true substrate and that Mg2+ ions act as a non-essential activator. The kinetic mechanism of the enzyme was investigated by using product and dead-end inhibitors of the cleavage and condensation reactions. The data indicated an ordered Uni Bi mechanism and the kinetic constants of the model were calculated. The spectrophotometric titration of thiol groups in Phycomyces isocitrate lyase with 5.5'-dithiobis-(2-nitrobenzoic acid) gave two free thiol groups per subunit of enzyme in the native state and three in the denatured state. The isocitrate lyase was completely inactivated by iodoacetate, with non-linear kinetics. The inactivation data suggest that the enzyme has two classes of modifiable thiol groups. The results are also in accord with the formation of a non-covalent enzyme-inhibitor complex before irreversible modification of the enzyme. Both the equilibrium constants for formation of the complex and the first-order rate constants for the irreversible modification step were determined. The partial protective effect of isocitrate and Mg2+ against iodoacetate inactivation was investigated in a preliminary form.  相似文献   

8.
Rabbit skeletal muscle glycogen debranching enzyme is inactivated in a kinetically biphasic manner by GSSG at pH 8.0. The rapid phase results in the loss of 30% activity, while the slower phase leads to total enzyme inactivation. Both the glucosidase and the transferase activities of the enzyme are inhibited by GSSG. The inactivation by disulfides is fully and rapidly reversed in a biphasic manner by reduction with excess reduced dithiothreitol or GSH. After a fast initial recovery of 70% of the initial activity, the remaining 30% of the activity is recovered more slowly. Equilibration of the enzyme with a redox buffer of GSH and GSSG shows a monophasic equilibration of the activity. The ratio of GSH/GSSG where the enzyme is 50% active (R0.5) is 0.06 +/- 0.03. The R0.5 does not vary significantly with the total concentration of glutathione species suggesting formation of protein-SSG mixed disulfides. The ratios of the observed second-order rate constants for GSSG inactivation and GSH reactivation do not lead to a correct value of the observed thiol/disulfide oxidation equilibrium constant. Although the enzyme has sulfhydryl groups, the oxidation of which leads to activity changes, the kinetic and thermodynamic resistance to oxidation suggests that the enzyme is not likely to be subject to regulation by thiol/disulfide exchange in vivo.  相似文献   

9.
The reactions of cerium(IV) and the hydroxyl radical [generated from iron(ii)/H2O2] with bovine serum albumin (BSA) have been investigated by EPR spin trapping. With the former reagent a protein-derived thiyl radical is selectively generated; this has been characterized via the anisotropic EPR spectra observed on reaction of this radical with the spin trap DMPO. Blocking of the thiol group results in the loss of this species and the detection of a peroxyl radical, believed to be formed by reaction of oxygen with initially-generated, but undetected, carbon-centred radicals from aromatic amino acids. Experiments with a second spin trap (DBNBS) confirm the formation of these carbon-centred species and suggest that damage can be transferred from the thiol group to carbon sites in the protein. A similar transfer pathway can be observed when hydroxyl radicals react with BSA.

Further experiments demonstrate that the reverse process can also occur: when hydroxyl radicals react with BSA, the thiol group appears to act as a radical sink and protects the protein from denaturation and fragmentation through the transfer of damage from a carbon site to the thiol group. Thiol-blocked BSA is shown to be more susceptible to damage than the native protein in both direct EPR experiments and enzyme digestion studies. Oxygen has a similar effect, with more rapid fragmentation detected in its presence than its absence.  相似文献   

10.
Drosophilia spectrin. I. Characterization of the purified protein   总被引:18,自引:14,他引:4  
We purified a protein from Drosophila S3 tissue culture cells that has many of the diagnostic features of spectrin from vertebrate organisms: (a) The protein consists of two equimolar subunits (Mr = 234 and 226 kD) that can be reversibly cross-linked into a complex composed of equal amounts of the two subunits. (b) Electron microscopy of the native molecule reveals two intertwined, elongated strands with a contour length of 180 nm. (c) Antibodies directed against vertebrate spectrin react with the Drosophila protein and, similarly, antibodies to the Drosophila protein react with vertebrate spectrins. One monoclonal antibody has been found to react with both of the Drosophila subunits and with both subunits of vertebrate brain spectrin. (d) The Drosophila protein exhibits both actin-binding and calcium-dependent calmodulin-binding activities. Based on the above criteria, this protein appears to be a bona fide member of the spectrin family of proteins.  相似文献   

11.
1. A detailed study of the reaction of iodoacetamide with arginine kinase has been carried out. 2. The enzyme contains five reactive thiol groups per 37000g. of protein, all of which can be alkylated. 3. Below pH8.5 loss of activity is substantially independent of pH and can be correlated with the alkylation of a single pH-independent thiol. 4. One catalytic site per enzyme molecule is inferred. 5. The progress curves of the alkylation reaction are polyphasic and reveal a pH-and time-dependent sequential release of thiols which is dependent upon the alkylation of the first pH-independent thiol. This is supported by electrophoretic investigations. 6. Comparison of alkylation rate and rate of loss of activity suggests that two thiol groups are not essential for catalytic activity. Variability in enzyme preparations with respect to alkylation rate appears to be associated with these two groups. 7. A complex protection pattern is revealed by the effects of various substrate combinations on rates of alkylation and of loss of activity. It is inferred that two thiol groups participate in conformational changes and nucleotide interactions. 8. Comparison with creatine kinase suggests a fundamentally similar catalytic mechanism, although for arginine kinase certain additional restrictions are necessary because of the protection observed with nucleotide substrates.  相似文献   

12.
Bovine heart cytochrome c oxidase consists of 12 stoicheiometric polypeptide chains of at least 11 different types. The enzyme contains 14--16 cysteine residues; the distribution of nearly all cysteine residues over the subunits has been established. In native cytochrome c oxidase two thiol groups reacted rapidly and stoicheiometrically with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). These thiol groups are located in subunits I and III, respectively. This implies that subunit I is not fully buried in the hydrophobic core of the enzyme. After dissociation of the enzyme by sodium dodecyl sulphate more thiol groups became available to DTNB, in addition to those in subunits I and III, at least one in subunit II, two in fraction V/VI and one to two in the smallest subunit fraction. It is shown that separation of the subunits of cytochrome c oxidase by gel permeation chromatography in the presence of sodium dodecyl sulphate depends on the pH of the elution medium. The elution volume of subunits I, III and VII is dependent on pH, that of the others independent.  相似文献   

13.
S-Nitrosylation of protein thiol groups by nitric oxide (NO) is a widely recognized protein modification. In this study we show that nitrosonium tetrafluoroborate (BF4NO), a NO+ donor, modified the thiol groups of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by S-nitrosylation and caused enzyme inhibition. The resultant protein-S-nitrosothiol was found to be unstable and to decompose spontaneously, thereby restoring enzyme activity. In contrast, the NO-releasing compound S-nitrosoglutathione (GSNO) promoted S-glutathionylation of a thiol group of GAPDH both in vitro and under cellular conditions. The GSH-mixed protein disulfide formed led to a permanent enzyme inhibition, but upon dithiothreitol addition a functional active GAPDH was recovered. This S-glutathionylation is specific for GSNO because GSH itself was unable to produce protein-mixed disulfides. During cellular nitrosative stress, the production of intracellular GSNO might channel signaling responses to form protein-mixed disulfide that can regulate intracellular function.  相似文献   

14.
The inactivation of porcine heart thiolase I with the disulfide reagents 5,5'-dithiobis(2-nitrobenzoate) (DTNB) and 2,2- and 4,4-dithiopyridine in 0.2 M phosphate buffer, pH 7.5, follows second-order kinetics with rate constants of 2.2 X 10(2), 25 X 10(2), and 5.8 X 10(2) M-1 min-1, respectively. Stoichiometric concentrations of the thiol-oxidizing reagent diethyl azodicarboxylate inactivate thiolase in less than 1 min at pH 7.5. The presence of saturating concentrations of the substrate acetoacetyl coenzyme A or the formation of the acetyl enzyme (a normal catalytic intermediate) results in a significant protection against the inactivation of thiolase by DTNB, 2,2-dithiopyridine, and diethyl azodicarboxylate. All five sulfhydryl residues of native thiolase react with either of the dipyridyl disulfides, but only the equivalent of 3.2 residues react with DTNB even at high concentrations and prolonged incubation times. The reaction of thiolase with DTNB leads to the formation of 1.0-1.4 mol of intrachain disulfide and 0.65 mol of mixed disulfides. After inactivation of thiolase with an equimolar concentration of diethyl azodicarboxylate, 1.2 mol of intrachain disulfide per subunit is found. No cross-linking between the subunits occurs as a result of the reaction of thiolase with DTNB or diethyl azodicarboxylate. The DTNB-inactivated enzyme can be reactivated with excess dithiothreitol while the diethyl azodicarboxylate inactivated enzyme is totally resistant to reactivation by dithiothreitol. There appear to be at least two different ways of forming inactive, oxidized enzyme products depending on the oxidant used, suggesting the possibility of multiple sulfhydryl groups at or near the active site.  相似文献   

15.
The molecular basis of the high reactivity toward reducing agents of intersubunit disulfides at positions 31 and 32 of dimeric bovine seminal ribonuclease was investigated by studying in the monomeric enzyme the fast reaction kinetics with disulfides of the adjacent cysteine-31 and -32, exposed by selective reduction of the intersubunit disulfides. Negatively charged and neutral disulfide reagents were used for measuring the thiol reaction rates at neutral pH. The kinetics studied as a function of pH permitted us to define pK values for the thiols of interest and indicated the possibility of determining pK values of SH groups in proteins indirectly by measuring the kinetics of reactivity of the SH groups with a disulfide reagent. The results were compared with those obtained under identical conditions with synthetic thiol peptides and model compounds. The data indicate that the superreactivity of intersubunit disulfides of seminal ribonuclease is matched by the high reactivity at neutral pH of adjacent cysteine residues 31 and 32, as compared to all small thiol compounds tested. The synthetic hexapeptide segment of seminal ribonuclease Ac-Met-Cys-Cys-Arg-Lys-Met-OH, which includes the two cysteine residues of interest, was even more reactive. These data, and the other results reported in this paper, led to the conclusion that the superreactivity at neutral pH of cysteine residues at positions 31 and 32 of bovine seminal ribonuclease is primarily dependent on the nearby presence of positively charged groups, particularly the epsilon-NH2 of lysine-34, and is influenced by the adjacency of the two thiols and by the protein tertiary structure.  相似文献   

16.
5-Aminolaevulinic acid dehydratase: structure, function, and mechanism.   总被引:6,自引:0,他引:6  
delta-Aminolaevulinic acid dehydratase catalyses the synthesis of porphobilinogen. The enzyme has a molecular mass of 285000 and is composed of eight similar subunits of molecular mass 35000. The N-terminal amino acid is acylated, and the number of peptides found on tryptic digestion equals the number of lysine and arginine residues per mass of 35000. The eight subunits are apparently arranged at the corners of a cube and therefore have dihedral (D4) symmetry. The bovine liver enzyme which has been cystallized contains 4--6 atoms of zinc per mole of enzyme. The apo-enzyme obtained on prolonged hydrolysis can be reactivated by the addition of zinc or cadmium ions. The dialysed enzyme must be first treated with dithiothreitol. There are two very active SH groups in a total of 6--7-SH groups per subunit. The substrate forms a Schiff base with the epsilon-amino group of a lysine residue. Reduction of the Schiff base with NaBH4 should reveal the number of active sites per mole of enzyme. It appears that only four of the eight subunits form a Schiff base with the substrate indicating that the enzyme exhibits the phenomenon of either half-site reactivity or negative cooperativity. The enzyme appears to have a strong subunit-subunit interaction for an immobilized preparation remained stable for at least a month. An immobilized enzyme preparation was treated in a manner so that it dissociated into tetramers. Both the eluate and protein still attached to the Sepharose on a column were enzymically active. The bound enzyme could not reassociate under assay conditions but still contained about 50% of the original enzyme activity. It would seem that the enzyme is active when composed with less than eight subunits.  相似文献   

17.
1. Creatine kinase occurs in high concentration in the soluble proteins of dogfish muscle. A fourfold purification gives essentially pure enzyme but with a low specific activity. This appears to be a property of the native enzyme and not a result of the isolation procedures used. 2. The amino acid composition is similar to that of other phosphagen kinases, but the enzyme differs from mammalian creatine kinases in having four thiol groups readily reactive towards 5,5′-dithiobis-(2-nitrobenzoic acid). Titration of two thiol groups is accompanied by almost complete loss of activity. The remaining two thiol groups react at different rates, suggesting that modifying the third thiol group affects the reactivity of the fourth thiol group. 3. The enzyme is markedly protected against inactivation by iodoacetamide by MgATP or MgADP. Addition of creatine to MgADP decreases protection, but the further addition of Cl restores protection to the original value. The quaternary MgADP–creatine–enzyme–nitrate complex protects very strongly as is found for the rabbit enzyme. The involvement of the conformational state of the enzyme in such effects is discussed. 4. Creatine kinase from both dogfish and rabbit is equally sensitive to urea denaturation. Urea protects the dogfish enzyme by about 9% against inhibition by iodoacetamide. 5. The formation of a hybrid between the dogfish and rabbit enzymes in vitro has been demonstrated. 6. At high substrate concentrations the dogfish enzyme shows apparent ordered kinetics. The effect of temperature on Vmax. and the Michaelis constants for MgATP and creatine were determined. These and changes in the apparent activation energy suggest that limited adaptation has occurred commensurate with physiological need.  相似文献   

18.
The mode of action of the antimicrobial agent, 5-bromo-5-nitro-1,3-dioxane (bronidox), was studied in detail for gram-positive and gram-negative bacteria, yeast and fungi. The studies included MIC testing, thiol inhibition of activity, intracellular leakage, oxygen consumption, incorporation of 3H-uridine, scanning electron microscopy, inhibition of enzyme activity (papain) and in vitro oxidation of thiols to disulfides. It appears that the primary mode of action of bronidox is the same as, or similar to, that of bronopol, i.e. the oxidation of essential protein thiol causing inhibition of enzyme activity and subsequent inhibition of microbial growth.  相似文献   

19.
Oligomeric cyclic disulfides, obtained by mild oxidation of the fully protected dipeptide L -cysteinyl-L -cysteine, have been isolated by gel and thin-layer chromatography. Polymeric material was recycled by a thiol–disulfide exchange-reaction performed at basic pH. Spectroscopic investigations of the monomer and the two dimers indicate that conformers characterized by dihedral angles about the S? S bond close to ±90° are preferred. Moreover, chiroptical and 1H-nmr data for these compounds suggest higher mobility for the two dimers. The antiparallel dimeric disulfide can be considered a model compound for the hinge region formed at the subunit interface of the bovine seminal ribonuclease, a dimeric enzyme showing a complex kinetic behavior.  相似文献   

20.
Rabbit liver aldolase B (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) contains 8 SH groups/subunit and no disulfide bonds. In the native enzyme 3 SH groups/subunit are titrable with 5,5'-dithiobis(2-nitrobenzoic) acid (Nbs2), 2,2'-dithiodipyridine and N-ethylmaleimide, whereas p-mercuribenzoate is able to react with 4 thiol groups per subunit. Among the three thiol groups titrable with Nbs2, two react 'fast' with simple second-order kinetics, one reacts 'slow' and for this thiol group saturation kinetics is observed, suggesting a reversible binding of Nbs2 to the enzyme prior to covalent modification. It is shown that this binding most likely occurs via ionic interactions in the region close to the active site. The kinetic differentiation between the two 'fast' reacting groups is possible by kinetic analysis of the release of Nbs residues from the modified enzyme. Modification of all exposed SH groups of aldolase B results in 14-32% loss of enzymatic activity. The complete inactivation of liver aldolase by 1 mM p-mercuribenzoate reported previously (Waud, J.M., Feldman, E. and Schray, K.J. (1981) Arch. Biochem. Biophys. 206, 292-295) is shown to be caused by a nonspecific reaction of this reagent used in large excess. It is concluded that this isoenzyme differs from muscle aldolase in the reactivity of exposed SH groups, the mechanisms of the interaction with modifying agents and also in the effect of SH group modification on the enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号