首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify consistency in the size of carbon pool of a lowland tropical rainforest, we calculated changes in above-ground biomass in the Pasoh Forest Reserve, Peninsular Malaysia. We estimated the total above-ground biomass of a mature stand using tree census data obtained in a 6-ha plot every 2years from 1994 to 1998. The total above-ground biomass decreased consistently from 1994 (431Mgha–1) to 1998 (403Mgha–1) (1Mg=103 kg). These are much lower than that in 1973 for a 0.2ha portion of the same area, suggesting that the the total above-ground biomass reduction might have been consistent in recent decades. This trend contrasted with a major trend for neotropical forests. During 1994–1998, the forest gained 23.0 and 0.88Mgha–1 of the total above-ground biomass by tree growth and recruitment, respectively, and lost 51.9Mgha–1 by mortality. Overall, the biomass decreased by 28.4Mgha–1 (i.e. 7.10Mgha–1·year–1), which is almost equivalent to losing a 76-cm-diameter living tree per hectare per year. Analysis of positive and negative components of biomass change revealed that deaths of large trees dominated the total above-ground biomass decrease. The forest biomass also varied spatially, with the total above-ground biomass density ranging 212–655Mgha–1 on a 0.2-ha basis (n= 30 subplots, 1998) and 365–440Mgha–1 on a 1ha basis. A large decrease of the total above-ground biomass density (>50Mg per ha per 2years) in several 0.2-ha subplots contributed to the overall decrease in the 6-ha total above-ground biomass. In the present study, we discuss the association between forest dynamics and biomass fluctuation, and the implication for carbon cycling in mature forests with emphasis on forest monitoring and assessments of soil and decomposition systems.  相似文献   

2.
丁易  黄继红  许玥  臧润国 《生态学报》2021,41(13):5118-5127
多次刀耕火种弃耕后自然恢复的热带次生林恢复速度通常较为缓慢。抚育是提高森林恢复和木材生产速度的重要营林措施,因此利用抚育间伐的方式加快热带次生林的恢复速度是当前森林经营和保护的重要议题。基于海南岛60个0.25 hm2热带次生林样地开展了抚育间伐对比试验。研究表明,经过5年的自然恢复,30个抚育样地和30个对照样地的地上生物量分别提高了24.5%和13.4%,而且抚育样地中减少的地上生物量迅速接近对照样地。抚育主要减少了清除种的地上生物量,而提高了保留种的地上生物量。次生林经过抚育处理后,其地上生物量的绝对增长量显著提高了58.74%,相对增长率显著提高了67.93%。在抚育样地中,地上生物量的绝对增长量和相对增长量均随着抚育强度呈现单峰曲线变化的趋势,抚育强度在(10±2.5)%时地上生物量的相对和绝对增长量最高。抚育强度是影响地上生物量增长量的重要因素,而物种多样性和功能离散度的作用较小。决定地上生物量的相对增长量最重要的因素(负作用)是初始生物量。本研究为我国热带次生林的未来管理提供了重要的理论基础和实践证据。  相似文献   

3.
为了探讨砂仁种植对热带季节雨林土壤节肢动物群落的影响,采用样地调查法对西双版纳勐仑自然保护区热带季节雨林及林下砂仁种植地土壤节肢动物群落进行了调查,2种生境、不同季节3次取样共获得土壤节肢动物3772个,隶属6纲23目,其中砂仁地中膜翅目(蚂蚁)、蜱螨目、半翅目为优势类群,占全捕获量的73.329%,而季节雨林中膜翅目(蚁类)、蜱螨目、鞘趔目和弹尾目为优势类群,占全捕量89.778%。2样地土壤节肢动物类群数、个体数和多样性指数的水平分布差异显示为季节雨林高于砂仁地,垂直分布显示季节雨林为土壤表层多于下层,表聚现象明显,砂仁地因受人为活动影响,其土壤节肢动物的垂直分布具有较大变化,出现下层高于表层的逆向分布;2样地土壤节肢动物群落季节变化趋势相近,均表现为干季高于雨季,其中砂仁地土壤节肢动物个体数在干热季最多,季节雨林个体数则在雾凉季最高。  相似文献   

4.
Biometric inventories for 25 years, from 1983 to 2005, indicated that the Jianfengling tropical mountain rain forest in Hainan, China, was either a source or a modest sink of carbon. Overall, this forest was a small carbon sink with an accumulation rate of (0.56±0.22) Mg C ha−1yr−1, integrated from the long-term measurement data of two plots (P9201 and P8302). These findings were similar to those for African and American rain forests ((0.62±0.23) Mg C ha−1yr−1). The carbon density varied between (201.43±29.38) Mg C ha−1 and (229.16±39.2) Mg C ha−1, and averaged (214.17±32.42) Mg C ha−1 for plot P9201. Plot P8302, however, varied between (223.95±45.92) Mg C ha−1 and (254.85±48.86) Mg C ha−1, and averaged (243.35±47.64) Mg C ha−1. Quadratic relationships were found between the strength of carbon sequestration and heavy rainstorms and dry months. Precipitation and evapotranspiration are two major factors controlling carbon sequestration in the tropical mountain rain forest.  相似文献   

5.
Arunachalam  A.  Arunachalam  Kusum 《Plant and Soil》2000,223(1-2):187-195
We examined the effects of treefall gap size and soil properties on microbial biomass dynamics in an undisturbed mature-phase humid subtropical broadleaved forest in north-east India. Canopy gaps had low soil moisture and low microbial biomass suggesting that belowground dynamics accompanied changes in light resources after canopy opening. High rainfall in the region causes excessive erosion/leaching of top soil and eventually soil fertility declines in treefall gaps compared to understorey. Soil microbial population was less during periods when temperature and moisture conditions are low, while it peaked during rainy season when the litter decomposition rate is at its peak on the forest floor. Greater demand for nutrients by plants during rainy season (the peak vegetative growth period) limited the availability of nutrients to soil microbes and, therefore, low microbial C, N and P. Weak correlations were also obtained for the relationships between microbial C, N and P and soil physico–chemical properties. Gap size did influence the microbial nutrients and their contribution to soil organic carbon, total Kjeldhal nitrogen and available-P. Contribution of microbial C to soil organic carbon, microbial N to total nitrogen were similar in both treefall gaps and understorey plots, while the contribution of microbial P to soil available-P was lower in gap compared to the understorey. These results indicate that any fluctuation in microbial biomass related nutrient cycling processes in conjunction with the associated microclimate variation may affect the pattern of regeneration of tree seedlings in the gaps and hence be related with their size. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
生物多样性和生态系统功能的关系直接或间接地影响着生产力, 是生态学研究的关键问题。本研究旨在定量探讨亚热带自然林演替后期森林生态系统树木多样性与生物量或生产力的关系。本研究基于中国南亚热带长期永久性样地的群落调查数据以及地形和土壤养分数据, 分析了南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素。相关性分析结果表明, 物种多样性与生物量呈显著负相关, 与生产力呈显著正相关; 结构多样性与生物量呈显著正相关, 与生产力呈显著负相关。此外, 不同环境因子对多样性、生物量和生产力的影响具有显著差异, 其中土壤含水量对生产力有显著影响, 物种多样性指标与部分地形和土壤因子均有相关性, 而群落结构多样性指标与土壤因子的相关性更强。方差分解结果表明, 结构多样性对生物量和生产力的单独效应的解释率最大, 分别为35.39%和5.21%; 其次是结构多样性和物种多样性的共同效应, 对生物量和生产力的解释率分别为13.66%和3.53%; 地形和土壤因子的解释率较小。同时, 结构方程结果也表明, 结构多样性对生物量有较强的直接正影响; 生物量对生产力有强烈的直接负影响, 结构多样性通过增加生物量明显地减少了生产力; 土壤和地形因子主要是通过物种和结构多样性间接影响生物量和生产力。综上, 本研究认为在南亚热带森林演替顶极群落中, 群落结构复杂性和物种多样性的提高对促进群落生产力和生物量具有重要作用。  相似文献   

7.
8.
Trait‐response effects are critical to forecast community structure and biomass production in highly diverse tropical forests. Ecological theory and few observation studies indicate that trees with acquisitive functional traits would respond more strongly to higher resource availability than those with conservative traits. We assessed how long‐term tree growth in experimental nutrient addition plots (N, P, and N + P) varied as a function of morphological traits, tree size, and species identity. We also evaluated how trait‐based responses affected stand scale biomass production considering the community structure. We found that tree growth depended on interactions between functional traits and the type or combination of nutrients added. Common species with acquisitive functional traits responded more strongly to nutrient addition, mainly to N + P. Phosphorous enhanced the growth rates of species with acquisitive and conservative traits, had mostly positive effects on common species and neutral or negative effects in rare species. Moreover, trees receiving N + P grew faster irrespective of their initial size relative to trees in control or to trees in other treatment plots. Finally, species responses were highly idiosyncratic suggesting that community processes including competition and niche dimensionality may be altered under increased resource availability. We found no statistically significant effects of nutrient additions on aboveground biomass productivity because acquisitive species had a limited potential to increase their biomass, possibly due to their generally lower wood density. In contrast, P addition increased the growth rates of species characterized by more conservative resource strategies (with higher wood density) that were poorly represented in the plant community. We provide the first long‐term experimental evidence that trait‐based responses, community structure, and community processes modulate the effects of increased nutrient availability on biomass productivity in a tropical forest.  相似文献   

9.
10.
海南岛尖峰岭热带山地雨林土壤和凋落物呼吸研究   总被引:24,自引:0,他引:24  
采用 CI-30 1 PS红外 CO2 测定系统对海南岛尖峰岭热带山地雨林土壤和凋落物的呼吸进行测定结果表明 ,原始林土壤呼吸速率昼夜变化表现为多峰曲线 ,最高峰在 2 0 :0 0 ,在 1 2 :0 0和 4 :0 0~ 6 :0 0出现 2个次高峰 ,平均呼吸速率为1 0 .6 85 3μmol· m- 2· s- 1;更新林土壤呼吸速率变化大 ,平均为 1 4 .75 36 μmol· m- 2· s- 1,高峰主要在 1 3:0 0和 2 :0 0 ;凋落物分解过程在林地 CO2 排放总量中贡献很少 ,仅占 1 .74 1 %~ 2 .831 % ;原始林凋落物 CO2 排放量明显比更新林大 ,而各层的排放比例不一样 ,原始林是 b层 (半分解凋落物及腐殖质层 ) >a层 (未分解凋落物层 ) ,更新林是 b层相似文献   

11.
Difficulty in balancing the global carbon budget has lead to increased attention on tropical forests, which have been estimated to account for up to one third of global gross primary production. Whether tropical forests are sources, sinks, or neutral with respect to their carbon balance with the atmosphere remains unclear. To address this issue, estimates of net ecosystem exchange of carbon (NEE) were made for 3 years (1998–2000) using the eddy‐covariance technique in a tropical wet forest in Costa Rica. Measurements were made from a 42 m tower centred in an old‐growth forest. Under unstable conditions, the measurement height was at least twice the estimated zeroplane height from the ground. The canopy at the site is extremely rough; under unstable conditions the median aerodynamic roughness length ranged from 2.4 to 3.6 m. No relationship between NEE and friction velocity (u*) was found using all of the 30‐min averages. However, there was a linear relationship between the nighttime NEE and averaged u* (R2 = 0.98). The diurnal pattern of flux was similar to that found in other tropical forests, with mean daytime NEE ca. ? 18 μ mol CO2 m?2 s?1 and mean nighttime NEE 4.6 μ mol CO2 m?2 s?1. However, because ~ 80% of the nighttime data in this forest were collected during low u* conditions ( < 0.2 m s?1), nighttime NEE was likely underestimated. Using an alternative analysis, mean nighttime NEE increased to 7.05 μ mol CO2 m?2 s?1. There were interannual differences in NEE, but seasonal differences were not apparent. Irradiance accounted for ~ 51% of the variation in the daytime fluxes, with temperature and vapour pressure deficit together accounting for another ~ 20%. Light compensation points ranged from 100 to 207 μ mol PPFD m?2 s?1. No was relationship was found between 30‐min nighttime NEE and tower‐top air temperature. A weak relationship was found between hourly nighttime NEE and canopy air temperature using data averaged hourly over the entire sampling period (Q10 = 1.79, R2 = 0.17). The contribution of below‐sensor storage was fairly constant from day to day. Our data indicate that this forest was a slight carbon source in 1998 (0.05 to ?1.33 t C ha?1 yr?1), a moderate sink in 1999 (?1.53 to ?3.14 t C ha?1 yr?1), and a strong sink in 2000 (?5.97 to ?7.92 t C ha?1 yr?1). This trend is interpreted as relating to the dissipation of warm‐phase El Niño effects over the course of this study.  相似文献   

12.
13.
14.
Aim Tropical forests have been recognized as important global carbon sinks and sources. However, many uncertainties about the spatial distribution of live tree above‐ground biomass (AGB) remain, mostly due to limited availability of AGB field data. Recent studies in the Amazon have already shown the importance of large sample size for accurate AGB gradient analysis. Here we use a large stem density, basal area, community wood density and AGB dataset to study and explain their spatial patterns in an Asian tropical forest. Location Borneo, Southeast Asia. Methods We combined stem density, basal area, community wood density and AGB data from 83 locations in Borneo with an environmental database containing elevation, climate and soil variables. The Akaike information criterion was used to select models and environmental variables that best explained the observed values of stem density, basal area, community wood density and AGB. These models were used to extrapolate these parameters across Borneo. Results We found that wood density, stem density, basal area and AGB respond significantly, but differentially, to the environment. AGB was only correlated with basal area, but not with stem density and community wood specific gravity. Main conclusions Unlike results from Amazonian forests, soil fertility was an important positive correlate for AGB in Borneo while community wood density, which is a main driver of AGB in the Neotropics, did not correlate with AGB in Borneo. Also, Borneo's average AGB of 457.1 Mg ha?1 was c. 60% higher than the Amazonian average of 288.6 Mg ha?1. We find evidence that this difference might be partly explained by the high density of large wind‐dispersed Dipterocarpaceae in Borneo, which need to be tall and emergent to disperse their seeds. Our results emphasize the importance of Bornean forests as carbon sinks and sources due to their high carbon storage capacity.  相似文献   

15.
Tropical rain forests play a dominant role in global biosphere-atmosphere CO(2) exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (相似文献   

16.
T. Penczak  C. Lasso 《Hydrobiologia》1991,215(2):121-133
The River Todasana is a small rain tropical forest stream emptying to the Caribbean Sea (Venezuela). Fish were sampled by electrofishing at three contiguous sites (pool, riffle, raceway). Nine species were recorded. Their mean biomass and production were: 43.72 kg ha−1 and 36.94 kg ha−1 yr−1, maximum: 55.47 kg ha−1 and 42.33 kg ha−1 yr−1, respectively.  相似文献   

17.
Large animal species, which provide important ecological functions such as dispersal of seeds or top–down control of seed predators, are very vulnerable in fragmented forests, being unable to survive in small fragments, and facing increasing hunting pressure. The loss of large animals affects two main ecological processes crucial for the tree reproductive cycle: seed dispersal of large seeds (e.g. provided by tapirs) and control of seed predator population (e.g. provided by large cats). The changes in both processes are expected to increase seed mortality since seeds are not dispersed away from conspecifics (causing increased pre‐dispersal mortality due to negative density dependent effects) and/or face increased predation after a dispersal event (post‐dispersal mortality). Although an extensive body of empirical knowledge exists on seed predation, the link between seed loss and adult tree community composition and structure is not well established, as well as the temporal scale seed changes affect adults. Using an individual‐based forest model (FORMIND), we evaluate the long‐term consequences of increased pre and post‐dispersal seed mortality on the future forest biomass retention of a Brazilian northeastern Atlantic forest. Our results show that forest biomass is significantly affected after 80–93% pre‐dispersal loss of large seeds, or post‐dispersal predation densities of 20–25 predators per parent tree. Large‐seeded tree species are at increased risk of local extinction causing up to 26.2% loss of forest biomass when both pre and post‐dispersal processes are combined. However, these changes can last up to 100 years after the occurrence of defaunation. In summary we conclude that large animal loss has the potential to reduce future forest biomass and tree species‐richness by impacting seed survival, and should be considered in the planning of biodiversity friendly landscapes as well as in calculations of the global carbon budget.  相似文献   

18.
对土壤原生动物、线虫和其它大中型土壤动物等3个部分,分别描述群落的季节变化,然后,综合分析气候因素对群落的影响。①原生动物群落的季节化表现为:种数在1、2月份最高,达43、44种;个体数量则在8月份和12月份(14万多和12万多/g.干土)。②线早的种数也在1月份最高,达67种;个体数则在9月份(88.3万/m^2);DG指数显示出有9月份的大高峰(19.9)和1月份的小高峰(19.7)。③大中型土壤动物群落的季节变化幅度很大:类群数的大高峰在7月份(31个),小高峰在12月份(17种);个体数量则在6月份和11月份(5.8万个和1.05万个/m^2)。④气温与地表温度对群落变化的影响较小:对线虫的种数变化有显著负相关;对原生动物、大中型土壤动物种数变化也只有阶段性的相关。⑤土壤含水量对群落变化的影响较大:与原生动物丰度呈非常显著的相关(r=0.896,d?=10,r0.01=0.708);与其它大中型土壤动物的类群数、总个体数及DG指数的影响则具有季节性差异,即在湿季呈显著的负相关。⑥降水量年内和年间的变化均具很大的不稳定性,暴雨又是土壤动物(除原生动物外)灾难性的因素。因此降水量的变化是造成群落跳跃式波动和大起大落的主要因素。  相似文献   

19.
Aim How important are frequent, low‐intensity disturbances to tree community dynamics of a cyclone‐prone forest? We tested the following hypotheses concerning the ‘inter‐cataclysm’ period on a remote Polynesian island: (1) tree turnover would be high and recruitment rates would be significantly higher than mortality; (2) low‐intensity disturbance would result in a marginal increase in tree mortality in the short term; (3) turnover would vary among species and would be associated with plant traits linked to differences in life history; and (4) mortality and recruitment events would be spatially non‐random. Location Tutuila, a volcanic island in the Samoan Archipelago, Polynesia. Methods We censused the tree (stem diameter ≥ 10 cm) community in 3.9 ha of tropical forest three times over a 10‐year period, 1998–2008. We calculated annual mortality, recruitment and turnover rates for 36 tree species. We tested for non‐random spatial patterns and predictors of mortality, and non‐random spatial patterns of tree recruitment. A 2004 cyclone passing within 400 km allowed us to measure the effects of a non‐cataclysmic disturbance on vital rates. Results Annual turnover was 2.8% and annual recruitment was 3.6%; these are some of the highest rates in the tropics, and likely to be a response to a cyclone that passed < 50 km from Tutuila in 1991. Species turnover rates over 10 years were negatively correlated with wood specific gravity, and positively correlated with annual stem diameter increment. Mortality was spatially aggregated, and a function of site, species and an individual’s growth rate. Recruitment was highest on ground with low slope. The low‐magnitude cyclone disturbance in 2004 defoliated 29% of all trees, but killed only 1.8% of trees immediately and increased annual mortality over 5 years by 0.7%. Main conclusions The inter‐cataclysm period on Tutuila is characterized by frequent, low‐amplitude disturbances that promote high rates of tree recruitment and create a dynamic, non‐equilibrium or disturbed island disequilibrium tree community. Species with low wood density and fast growth rates have enhanced opportunities for recruitment between cataclysms, but also higher probabilities of dying. Our results suggest that increases in the frequency of cyclone activity could shift relative abundances towards disturbance‐specialist species and new forest turnover rates.  相似文献   

20.
Seasonally dry tropical forests (SDTF) are a widely distributed vegetation type in the tropics, characterized by seasonal rainfall with several months of drought when they are subject to fire. This study is one of the first attempts to quantify above- and belowground biomass (AGB and BGB) and above- and belowground carbon (AGC and BGC) pools to calculate their recovery after fire, using a chronosequence approach (six forests that ranged form 1 to 29 years after fire and mature forest). We quantified AGB and AGC pools of trees, lianas, palms, and seedlings, and BGB and BGC pools (Oi, Oe, Oa soil horizons, and fine roots). Total AGC ranged from 0.05 to nearly 72 Mg C ha−1, BGC from 21.6 to nearly 85 Mg C ha−1, and total ecosystem carbon from 21.7 to 153.5 Mg C ha−1; all these pools increased with forest age. Nearly 50% of the total ecosystem carbon was stored in the Oa horizon of mature forests, and up to 90% was stored in the Oa-horizon of early successional SDTF stands. The soils were shallow with a depth of <20 cm at the study site. To recover values similar to mature forests, BGC and BGB required <19 years with accumulation rates greater than 20 Mg C ha−1 yr−1, while AGB required 80 years with accumulation rates nearly 2.5 Mg C ha−1 yr−1. Total ecosystem biomass and carbon required 70 and 50 years, respectively, to recover values similar to mature forests. When belowground pools are not included in the calculation of total ecosystem biomass or carbon recovery, we estimated an overestimation of 10 and 30 years, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号