首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Arsenic is a widespread environmental toxic agent that has been shown to cause diverse tissue and cell damage and at the same time to be an effective anti-cancer therapeutic agent. The objective of this study is to explore the signaling mechanisms involved in arsenic toxicity. We show that the IkappaB kinase beta (IKKbeta) plays a crucial role in protecting cells from arsenic toxicity. Ikkbeta(-)(/)(-) mouse 3T3 fibroblasts have decreased expression of antioxidant genes, such as metallothionein 1 (Mt1). In contrast to wild type and IKKbeta-reconstituted Ikkbeta(-)(/)(-) cells, IKKbeta-null cells display a marked increase in arsenic-induced reactive oxygen species (ROS) accumulation, which leads to activation of the MKK4-c-Jun NH(2)-terminal kinase (JNK) pathway, c-Jun phosphorylation, and apoptosis. Pretreatment with the antioxidant N-acetylcysteine (NAC) and expression of MT1 in the Ikkbeta(-)(/)(-) cells prevented JNK activation; moreover, NAC pretreatment, MT1 expression, MKK4 ablation, and JNK inhibition all protected cells from death induced by arsenic. Our data show that two signaling pathways appear to be important for modulating arsenic toxicity. First, the IKK-NF-kappaB pathway is crucial for maintaining cellular metallothionein-1 levels to counteract ROS accumulation, and second, when this pathway fails, excessive ROS leads to activation of the MKK4-JNK pathway, resulting in apoptosis.  相似文献   

3.
4.
NF-kappaB activity in mammalian cells is regulated through the IkappaB kinase (IKK) complex, consisting of two catalytic subunits (IKKalpha and IKKbeta) and a regulatory subunit (IKKgamma). Targeted deletion of Ikkbeta results in early embryonic lethality, thus complicating the examination of IKKbeta function in adult tissues. Here we describe the role of IKKbeta in B lymphocytes made possible by generation of a mouse strain that expresses a conditional Ikkbeta allele. We find that the loss of IKKbeta results in a dramatic reduction in all peripheral B cell subsets due to associated defects in cell survival. IKKbeta-deficient B cells are also impaired in mitogenic responses to LPS, anti-CD40, and anti-IgM, indicating a general defect in the ability to activate the canonical NF-kappaB signaling pathway. These findings are consistent with a failure to mount effective Ab responses to T cell-dependent and independent Ags. Thus, IKKbeta provides a requisite role in B cell activation and maintenance and thus is a key determinant of humoral immunity.  相似文献   

5.
目的探讨核转录因子-κB(NF-κB)在大鼠肝癌发生发展中的作用和意义。方法应用免疫组织化学SP法,对二乙基亚硝胺(DEN)诱发的大鼠肝癌发生过程中NF-κB的动态表达进行了检测。结果 DEN诱发的肝癌为肝细胞癌,诱癌率为100%,大鼠肝癌癌变过程大致经过肝细胞损伤期、肝细胞增生-硬化期和肝细胞癌变期等三个阶段。在正常大鼠肝组织,偶见少量肝细胞呈阳性表达,随着肝癌发生发展,NF-κB阳性表达细胞逐渐增多,至诱癌晚期,可见大量NF-κB阳性表达细胞,均比正常肝组织表达高(P<0.05)。结论本研究表明肝细胞NF-κB的过度表达与肝癌的发生和发展密切有关。  相似文献   

6.
Chronic and persistent inflammation is a well-known carcinogenesis promoter. Hepatocellular carcinoma (HCC) is one of the most common inflammation-associated cancers; most HCCs arise in the setting of chronic inflammation and hepatic injury. Both NF-κB and STAT3 are important regulators of inflammation. Centrosomal P4.1-associated protein (CPAP), a centrosomal protein that participates primarily in centrosome functions, is overexpressed in HCC and can increase TNF-α-mediated NF-κB activation and IL-6-induced STAT3 activation. A transgenic (Tg) mouse model with hepatocyte-specific CPAP expression was established to investigate the physiological role of CPAP in hepatocarcinogenesis. Obvious inflammatory cell accumulation and fatty change were observed in the livers of CPAP Tg mice. The alanine aminotransferase (ALT) level and the expression levels of inflammatory genes, such as IL-6, IL-1β and TNF-α, were higher in CPAP Tg mice than in wild type (WT) mice. High-dose/short-term treatment with diethylnitrosamine (DEN) increased the ALT level, proinflammatory gene expression levels, and STAT3 and NF-κB activation in CPAP Tg mice; low-dose/long-term DEN treatment induced more severe liver tumor formation in CPAP Tg mice than in WT mice. CPAP can increase the expression of chemokine (C-C motif) ligand 16 (CCL-16), an important chemotactic cytokine, in human hepatocytes. CCL-16 expression is positively correlated with CPAP and TNF-α mRNA expression in the peritumoral part of HCC. In summary, these results suggest that CPAP may promote hepatocarcinogenesis through enhancing the inflammation pathway via increasing the expression of CCL-16.Subject terms: Liver cancer, Tumour immunology  相似文献   

7.
IKK-beta links inflammation to obesity-induced insulin resistance   总被引:26,自引:0,他引:26  
Inflammation may underlie the metabolic disorders of insulin resistance and type 2 diabetes. IkappaB kinase beta (IKK-beta, encoded by Ikbkb) is a central coordinator of inflammatory responses through activation of NF-kappaB. To understand the role of IKK-beta in insulin resistance, we used mice lacking this enzyme in hepatocytes (Ikbkb(Deltahep)) or myeloid cells (Ikbkb(Deltamye)). Ikbkb(Deltahep) mice retain liver insulin responsiveness, but develop insulin resistance in muscle and fat in response to high fat diet, obesity or aging. In contrast, Ikbkb(Deltamye) mice retain global insulin sensitivity and are protected from insulin resistance. Thus, IKK-beta acts locally in liver and systemically in myeloid cells, where NF-kappaB activation induces inflammatory mediators that cause insulin resistance. These findings demonstrate the importance of liver cell IKK-beta in hepatic insulin resistance and the central role of myeloid cells in development of systemic insulin resistance. We suggest that inhibition of IKK-beta, especially in myeloid cells, may be used to treat insulin resistance.  相似文献   

8.
肝细胞增殖抑制因子(Hepaticproliferationinhibitor,HPI)粗制品、半纯品和纯品对体外培养的人肝癌细胞具有显著抑增殖作用,随样品纯度提高抑制活性逐渐增强。纯品(浓度5μg/ml)的抑制率达77.71%。正常成年大鼠肝细胞呈HPI阳性表达。在DEN诱发大鼠肝细胞癌的发生发展过程中,转化的癌前期细胞和肝癌细胞呈HPI阴性表达。表明肝细胞HPI的表达能力在其癌变过程中消失,从而失去了自身的抑癌作用。  相似文献   

9.
Awuah PK  Rhieu BH  Singh S  Misse A  Monga SP 《PloS one》2012,7(6):e39771
Hepatocellular Carcinoma (HCC) is the fifth most common cancer worldwide. β-Catenin, the central orchestrator of the canonical Wnt pathway and a known oncogene is paramount in HCC pathogenesis. Administration of phenobarbital (PB) containing water (0.05% w/v) as tumor promoter following initial injected intraperitoneal (IP) diethylnitrosamine (DEN) injection (5 μg/gm body weight) as a tumor inducer is commonly used model to study HCC in mice. Herein, nine fifteen-day male β-catenin knockout mice (KO) and fifteen wild-type littermate controls (WT) underwent DEN/PB treatment and were examined for hepatic tumorigenesis at eight months. Paradoxically, a significantly higher tumor burden was observed in KO (p<0.05). Tumors in KO were β-catenin and glutamine synthetase negative and HGF/Met, EGFR & IGFR signaling was unremarkable. A significant increase in PDGFRα and its ligand PDGF-CC leading to increased phosphotyrosine-720-PDGFRα was observed in tumor-bearing KO mice (p<0.05). Simultaneously, these livers displayed increased cell death, stellate cell activation, hepatic fibrosis and cell proliferation. Further, PDGF-CC significantly induced hepatoma cell proliferation especially following β-catenin suppression. Our studies also demonstrate that the utilized DEN/PB protocol in the WT C57BL/6 mice did not select for β-catenin gene mutations during hepatocarcinogenesis. Thus, DEN/PB enhanced HCC in mice lacking β-catenin in the liver may be due to their ineptness at regulating cell survival, leading to enhanced fibrosis and regeneration through PDGFRα activation. β-Catenin downregulation also made hepatoma cells more sensitive to receptor tyrosine kinases and thus may be exploited for therapeutics.  相似文献   

10.
Mice lacking the Abc4 protein encoded by the multidrug resistance-2 gene (Mdr2(-/-)) develop chronic periductular inflammation and cholestatic liver disease resulting in the development of hepatocellular carcinoma (HCC). Inhibition of NF-κB by expression of an IκBα super-repressor (IκBαSR) transgene in hepatocytes was shown to prevent HCC development in Mdr2(-/-) mice, suggesting that NF-κB acts as a tumour promoter in this model of inflammation-associated carcinogenesis. On the other hand, inhibition of NF-κB by hepatocyte specific ablation of IKK2 resulted in increased liver tumour development induced by the chemical carcinogen DEN. To address the role of IKK2-mediated NF-κB activation in hepatocytes in the pathogenesis of liver disease and HCC in Mdr2(-/-) mice, we generated Mdr2-deficient animals lacking IKK2 specifically in hepatocytes using the Cre-loxP system. Mdr2(-/-) mice lacking IKK2 in hepatocytes developed spontaneously a severe liver disease characterized by cholestasis, major hyperbilirubinemia and severe to end-stage fibrosis, which caused muscle wasting, loss of body weight, lethargy and early spontaneous death. Cell culture experiments showed that primary hepatocytes lacking IKK2 were more sensitive to bile acid induced death, suggesting that hepatocyte-specific IKK2 deficiency sensitized hepatocytes to the toxicity of bile acids under conditions of cholestasis resulting in greatly exacerbated liver damage. Mdr2(-/-)IKK2(Hep-KO) mice remarkably recapitulate chronic liver failure in humans and might be of special importance for the study of the mechanisms contributing to the pathogenesis of end-stage chronic liver disease or its implications on other organs. Conclusion: IKK2-mediated signaling in hepatocytes protects the liver from damage under conditions of chronic inflammatory cholestasis and prevents the development of severe fibrosis and liver failure.  相似文献   

11.
应用免疫组织化学的ABC法,对二乙基亚硝胺(DEN)诱发大鼠发生过程中增殖细胞核抗原在肝组织中的表达进行了系统观察。结果显示:正常大鼠肝组织中仅见极少数PCNA阳性肝细胞,阳性率为0.08%,随着诱癌进程发展,大鼠肝组织中PCNA阳性肝细胞逐渐增多,诱癌第4、8、12周,大鼠肝组织中PCNA阳性肝细胞百分率分别为1.6%、3.8%、16.2%,诱癌晚期癌结节内大部分肝癌细胞里PCNA阳性表达,阳性率为80.6%。本研究结果表明原位检测PCNA表达比传统依据形态学分化程度来判断肿瘤发生可能性更为客观、可靠。  相似文献   

12.
13.
X Zhao  J Fu  A Xu  L Yu  J Zhu  R Dai  B Su  T Luo  N Li  W Qin  B Wang  J Jiang  S Li  Y Chen  H Wang 《Cell death & disease》2015,6(5):e1751
Hepatocarcinogenesis is a complex process involving chronic liver injury, inflammation, unregulated wound healing, subsequent fibrosis and carcinogenesis. To decipher the molecular mechanism underlying transition from chronic liver injury to dysplasia, we investigated the oncogenic role of gankyrin (PSMD10 or p28GANK) during malignant transformation in a transgenic mouse model. Here, we find that gankyrin increased in patients with cirrhosis. In addition to more severe liver fibrosis and tumorigenesis after DEN plus CCl4 treatment, hepatocyte-specific gankyrin-overexpressing mice (gankyrinhep) exhibited malignant transformation from liver fibrosis to tumors even under single CCl4 administration, whereas wild-type mice merely experienced fibrosis. Consistently, enhanced hepatic injury, severe inflammation and strengthened compensatory proliferation occurred in gankyrinhep mice during CCl4 performance. This correlated with augmented expressions of cell cycle-related genes and abnormal activation of Rac1/c-jun N-terminal kinase (JNK). Pharmacological inhibition of the Rac1/JNK pathway attenuated hepatic fibrosis and prevented CCl4-induced carcinogenesis in gankyrinhep mice. Together, these findings suggest that gankyrin promotes liver fibrosis/cirrhosis progression into hepatocarcinoma relying on a persistent liver injury and inflammatory microenvironment. Blockade of Rac1/JNK activation impeded gankyrin-mediated hepatocytic malignant transformation, indicating the combined inhibition of gankyrin and Rac1/JNK as a potential prevention mechanism for cirrhosis transition.Hepatocellular carcinoma (HCC) is the prototype of inflammation-associated cancer, as most patients with HCC have an established background of unresolved chronic liver disease and cirrhosis.1 Major HCC risk factors include infection with hepatitis viruses, intake of aflatoxin-contaminated food, alcoholic liver disease, nonalcoholic steatohepatitis (NASH), chronic hepatic inflammation and cirrhosis.2, 3 Cirrhosis is the primary risk factor for developing HCC, accompanied by long periods of chronic liver disease.4 However, the molecular mechanisms of this malignant transformation remain elusive.Gankyrin was identified as an oncoprotein that frequently overexpressed in human liver cancers and increased in the earlier stage of liver carcinogenesis.5, 6 It controls phosphorylated Rb and p53 degradation,7, 8 promotes the expansion of tumor-initiating cells9 and accelerates HCC progression. In addition, it also has been shown to regulate NF-κB and AKT.10, 11 We recently found that, in a rat model of carcinogen-induced liver carcinogenesis, gankyrin elevated in the stage of cirrhosis.12 However, it is still unknown how gankyrin promotes hepatocarcinogenesis in vivo.Here, we show increased gankyrin expression in patients with cirrhosis. We further used hepatocyte-specific gankyrin-overexpressing mice to study the role of gankyrin in hepatocarcinogenesis. Sustained gankyrin activation promotes DEN plus carbon tetrachloride (CCl4)-induced HCC formation. Moreover, it aggravates CCl4-mediated liver injury, hepatic fibrosis and ultimately leads to the development of cirrhosis and progression into HCC.  相似文献   

14.
BACKGROUND: The Jun N-terminal kinase (JNK) signaling pathway has been implicated in cell proliferation and apoptosis, but its function seems to depend on the cell type and inducing signal. In T cells, JNK has been implicated in both antigen-induced activation and apoptosis. RESULTS: We generated mice lacking the JNK2 isozymes. The mutant mice were healthy and fertile but defective in peripheral T-cell activation induced by antibody to the CD3 component of the T-cell receptor (TCR) complex - proliferation and production of interleukin-2 (IL-2), IL-4 and interferon-gamma (IFN-gamma) were reduced. The proliferation defect was restored by exogenous IL-2. B-cell activation was normal in the absence of JNK2. Activation-induced peripheral T-cell apoptosis was comparable between mutant and wild-type mice, but immature (CD4(+) CD8(+)) thymocytes lacking JNK2 were resistant to apoptosis induced by administration of anti-CD3 antibody in vivo. The lack of JNK2 also resulted in partial resistance of thymocytes to anti-CD3 antibody in vitro, but had little or no effect on apoptosis induced by anti-Fas antibody, dexamethasone or ultraviolet-C (UVC) radiation. CONCLUSIONS: JNK2 is essential for efficient activation of peripheral T cells but not B cells. Peripheral T-cell activation is probably required indirectly for induction of thymocyte apoptosis resulting from administration of anti-CD3 antibody in vivo. JNK2 functions in a cell-type-specific and stimulus-dependent manner, being required for apoptosis of immature thymocytes induced by anti-CD3 antibody but not for apoptosis induced by anti-Fas antibody, UVC or dexamethasone. JNK2 is not required for activation-induced cell death of mature T cells.  相似文献   

15.
Bax蛋白在大鼠肝癌发生过程中的表达和意义   总被引:3,自引:0,他引:3  
通过动态观察Bax蛋白在实验性大鼠肝癌发生过程中肝细胞的表达,探讨Bax蛋白与肝癌发生的关系及其生物学意义。用DEN饲喂大鼠,分别于第4、8、12、16、18周处死大鼠,取其肝脏,石蜡切片,ABC法免疫组织化染色。结果显示:正常成年大鼠肝细胞均有中等程度Bax蛋白表达。至诱癌第4周大鼠肝小叶内有少数肝细胞呈Bax蛋白免疫阳性反应,随诱癌发展进程,呈Bax蛋白免疫阳性反应肝细胞进一步减少,第12周,只可见肝细胞增生结节的多数肝细胞呈Bax蛋白免疫阳性反应。诱癌晚期(第18周),癌结节内肝癌细胞均呈Bax免疫反应阳性,其强度较正常肝细胞明显增强,Bax蛋白免疫反应产物为胞质内粗大的棕褐色颗粒。部争肝细胞胞质和胞膜均呈阳性,肝癌细胞最为常见。结果表明:Bax蛋白表达减少或缺失是肝癌发生过程中的早期事件,可能参与肝癌的启动过程。  相似文献   

16.
It has been reported previously that inhibitory kappaB kinase (IKK) supports osteoclastogenesis through NF-kappaB-mediated prevention of apoptosis. This finding suggests that the ligand for receptor activator of NF-kappaB (RANKL), the master osteoclastogenic cytokine, induces apoptosis of osteoclast precursors (OCPs) in the absence of IKKbeta/NF-kappaB competency. To validate this hypothesis, we sought to determine the pro-apoptotic signaling factors induced by RANKL in IKKbeta-null osteoclast OCPs and to rescue osteoclast differentiation in the absence of IKKbeta through their inhibition. To accomplish this, we generated mice that lack IKKbeta in multiple hematopoietic lineages, including OCPs. We found that these mice possess both in vitro and in vivo defects in osteoclast generation, in concurrence with previous reports, and that this defect is a result of susceptibility to RANKL-mediated apoptosis as a result of gain-of-function of JNK activation. We demonstrate that differentiation of OCPs depends on IKKbeta because reduced IKKbeta mRNA expression correlates with impaired induction of osteoclast differentiation markers in response to RANKL stimulation. We further show that fine-tuned inhibition of JNK activation in these cells inhibits RANKL-induced apoptosis and restores the ability of IKKbeta-null OCPs to become mature osteoclasts. Our data highlight the pro-osteoclastogenic and anti-apoptotic roles of IKKbeta in OCPs and identify a pro-apoptotic mechanism activated within the RANK signalosome.  相似文献   

17.
Ulcerative colitis-associated colorectal cancer (UC-CRC) is the most serious complication of ulcerative colitis (UC). Nuclear factor of activated T cells 3 (NFATc3) is participated in inflammation and cancer. In this study, we investigated the effects of NFATc3 on experimental UC-CRC in vivo and in vitro, and explored the underlying mechanisms. Administration of azoxymethane (AOM) and dextran sulfate sodium (DSS) induced UC-CRC model in C57BL/6 mice. Body weight was monitored weekly. Colon tissues were harvested at week 14. We examined changes in the histopathology, inflammatory cytokines, carcinogenesis factors, and epithelial-mesenchymal transition (EMT) markers in colon tissues. We found that NFATc3 expression was significantly up-regulated in AOM/DSS treated mice compared with control. Mice lacking NFATc3 showed decreased tumor number and size, decreased mucosal damage, and increased survival rate. Moreover, down-regulation of NFATc3 could inhibit the proliferation and EMT of UC-CRC, decrease the levels of pro-inflammatory cytokines, reduce the colonic infiltration by neutrophils and macrophages, and suppress the activation of P38 and JNK signal pathway in mice. In In vitro experiments, silencing NFATc3 suppressed the proliferation and EMT of CRC cells, and reduced the activation of P38 and JNK. In addition, miR-370-3p could bind to NFATc3. Down-regulation of miR-370-3p promoted proliferation and EMT of CRC cells, while silencing NFATc3 could reverse these effects. In conclusion, NFATc3 was involved in the pathogenesis of experimental UC-CRC and NFATc3 knockdown ameliorated experimental UC-CRC progression via the inhibition of inflammatory responses and EMT. NFATc3 mediated the inhibitory effects of miR-370-3p on CRC cells proliferation and EMT. Targeting NFATc3 may be effective in treating UC-CRC.  相似文献   

18.
19.
Activation of c-Jun amino-terminal kinase (JNK) facilitates tumour necrosis factor (TNF)-induced cell death. The p38 mitogen-activated protein kinase pathway is induced by TNF stimulation, but it has not been implicated in TNF-induced cell death. Here, we show that hepatocyte-specific ablation of p38alpha in mice results in excessive activation of JNK in the liver after in vivo challenge with bacterial lipopolysaccharide (LPS). Despite increased JNK activity, p38alpha-deficient hepatocytes were not sensitive to LPS/TNF toxicity showing that JNK activation was not sufficient to mediate TNF-induced liver damage. By contrast, LPS injection caused liver failure in mice lacking both p38alpha and IkappaB kinase 2 (IKK2) in hepatocytes. Therefore, when combined with partial nuclear factor-kappaB inhibition, p38alpha deficiency sensitizes the liver to cytokine-induced damage. Collectively, these results reveal a new function of p38alpha in collaborating with IKK2 to protect the liver from LPS/TNF-induced failure by controlling JNK activation.  相似文献   

20.
Hepatocellular carcinoma (HCC) is a multi-factorial and multi-step process. However, the molecular mechanisms, which play a pivotal role during progressive development of HCC, are not known. Accordingly Sprague-Dawley rats were administered diethylnitrosamine (DEN) for one to three months in order to understand the molecular alterations during progressive development of liver tumor. In this study involvement of G1/S regulatory proteins, MAP kinases and cell survival factors were analyzed using RT-PCR, western blotting and in vitro kinase assays. The data showed overexpression of cyclin D1 and increased expression and activation of ERK1/2, p38 kinase and JNK1/2 with progression of tumor suggesting that MAP kinases play an important role during tumorigenesis. These molecular alterations were supported by Akt upregulation and increase in the levels of inactive GSK3beta with progression of liver tumor. Further, p21-actived kinase1 (Pak1) was found to be upregulated with tumor progression, which is a novel observation during progressive liver carcinogenesis. These results indicate that elevated levels of all the three MAP kinases (ERK1/2, p38 and JNK1/2), Akt/GSK3beta and Pak1 are associated with cyclin D1 upregulation, which helps in the disruption of the G1/S regulatory point of the cell cycle and leads to abnormal cell proliferation during progressive hepatocarcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号