首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The import of essential organometallic micronutrients (such as iron-siderophores and vitamin B(12)) across the outer membrane of Gram-negative bacteria proceeds via TonB-dependent outer membrane transporters (TBDTs). The TBDT couples to the TonB protein, which is part of a multiprotein complex in the plasma (inner) membrane. Five crystal structures of TBDTs illustrate clearly the architecture of the protein in energy-independent substrate-free and substrate-bound states. In each of the TBDT structures, an N-terminal hatch (or plug or cork) domain occludes the lumen of a 22-stranded beta barrel. The manner by which substrate passes through the transporter (the "hatch-barrel problem") is currently unknown. Solution NMR and X-ray crystallographic structures of various TonB domains indicate a striking structural plasticity of this protein. Thermodynamic, biochemical and bacteriological studies of TonB and TBDTs indicate further that existing structures do not yet capture critical energy-dependent and in vivo conformations of the transport cycle. The reconciliation of structural and non-structural experimental data, and the unambiguous experimental elucidation of a detailed molecular mechanism of transport are current challenges for this field.  相似文献   

2.
The FadL family of proteins is responsible for the transport of hydrophobic compounds across the bacterial outer membrane. Two crystal structures of FadL, the long-chain fatty acid transporter from Escherichia coli, were recently determined, showing a novel fold characterized by the combination of a 14-stranded beta barrel and a "hatch" domain that plugs the barrel. Both crystal forms have several bound detergent molecules in the interior of the protein. This, together with differences between the N-terminal conformations of the FadL structures, has led to the proposal of a transport model that is distinct from those of all other known outer membrane transporters. According to this model, the transport of hydrophobic substrates across the outer membrane, as mediated by FadL family members, is based on diffusion, coupled to spontaneous conformational changes in the hatch domain.  相似文献   

3.
RecQ helicases feature multiple domains in their structure, of which the helicase domain, the RecQ-Ct domain and the HRDC domains are well conserved among the SF2 helicases. The helicase domain and the RecQ-Ct domain constitute the catalytic core of the enzyme. The domain interfaces are the DNA binding sites which display significant conformational changes in our molecular dynamics simulation studies. The preferred conformational states of the DNA bound and unbound forms of RecQ appear to be quite different from each other. DNA binding induces inter-domain flexibility leading to hinge mobility between the domains. The divergence in the dynamics of the two structures is caused by changes in the interactions at the domain interface, which seems to propagate along the whole protein structure. This could be essential in ssDNA binding after strand separation, as well as aiding translocation of the RecQ protein like an inch-worm.  相似文献   

4.
E Udho  KS Jakes  A Finkelstein 《Biochemistry》2012,51(34):6753-6759
TonB-dependent transporters (TBDTs), which transport iron-chelating siderophores and vitamin B(12) across the outer membrane of Gram-negative bacteria, share a conserved architecture of a 22-stranded β-barrel with an amino-terminal plug domain occluding the barrel. We previously reported that we could induce TBDTs to reversibly open in planar lipid bilayers via the use of urea and that these channels were responsive to physiological concentrations of ligands. Here we report that in the presence of urea, trypsin can cleave the amino-terminal 67 residues of the plug of the TonB-dependent transporter FhuA, as assessed by gel shift and mass spectrometry assays. On the bilayer, trypsin treatment in the presence of urea resulted in the induced conductance no longer being reversed upon removal of urea, suggesting that urea opens intact FhuA channels by pulling the plug at least partly out of the barrel and that removal of the urea then allows reinsertion of the plug into the barrel. When expressed separately, the FhuA plug domain was found to be a mostly unfolded structure that was able to occlude isolated FhuA β-barrels inserted into the membrane. Thus, although folded in the barrel, the plug need not be folded upon exiting the barrel. The rate of insertion of the β-barrels into the membrane was tremendously increased in the presence of an osmotic gradient provided by either urea or glycerol. Negative staining electron microscopy showed that FhuA in a detergent solution formed vesicles, thus explaining why an osmotic gradient promoted the insertion of FhuA into membranes.  相似文献   

5.
Burghardt TP  Park S  Ajtai K 《Biochemistry》2001,40(15):4834-4843
Myosin subfragment 1 (S1) is the ATP catalyzing motor protein in muscle. It consists of three domains that catalyze ATP and bind actin (catalytic), conduct energy transduction (converter), and transport the load (lever arm). These domains interface in two places identified as interface I, containing the reactive thiol (SH1) and ATP-sensitive tryptophan (Trp510), and interface II, containing the reactive lysine residue (RLR). Two crystal structures of S1 were extrapolated to working "in solution" or oriented "in tissue" forms, using structure-sensitive optical spectroscopic signals from extrinsic probes located in the interfaces. Observed signals included circular dichroism (CD) and absorption originating from S1 in solution in the presence and absence of actin and fluorescence polarization from cross-bridges in muscle fibers. Theoretical signals were calculated from S1 crystal structure models perturbed with lever arm movement from swiveling at three conserved glycines, 699, 703, and 710 (chicken skeletal myosin numbering). Structures giving the best agreement between the computed and observed signals were selected as the representative forms. Both interfaces undergo dramatic conformational change during ATPase and force development. Changes at interface I suggest the molecular basis for the collisional quenching sensitivity of Trp510 to nucleotide binding. The probe conformation at SH1 suggests how it alters S1 ATPases. At interface II, the spatial relationship of the lever arm and the extrinsic probe at RLR suggests how the probe alters S1 ATPases and that it should inhibit lever arm movement during the power stroke. The latter possibility, if true, establishes a part of the corridor through which the lever arm swings during the power stroke. Global structural changes in actomyosin are discussed in the accompanying paper [Burghardt et al. (2001) Biochemistry 40, 4821-4833].  相似文献   

6.
Iron is an essential nutrient for all microorganisms with a few exceptions. Microorganisms use a variety of systems to acquire iron from the surrounding environment. One such system includes production of an organic molecule known as a siderophore by many bacteria and fungi. Siderophores have the capacity to specifically chelate ferric ions. The ferricsiderophore complex is then transported into the cell via a specific receptor protein located in the outer membrane. This is an energy dependent process and is the subject of investigation in many research laboratories. The crystal structures of three outer membrane ferricsiderophore receptor proteins FepA, FhuA and FecA from Escherichia coli and two FpvA and FptA from Pseudomonas aeruginosa have recently been solved. Four of them, FhuA, FecA, FpvA and FptA have been solved in ligand-bound forms, which gave insight into the residues involved in ligand binding. The structures are similar and show the presence of similar domains; for example, all of them consist of a 22 strand-β-barrel formed by approximately 600 C-terminal residues while approximately 150 N-terminal residues fold inside the barrel to form a plug domain. The plug domain obstructs the passage through the barrel; therefore our research focuses on the mechanism through which the ferricsiderophore complex is transported across the receptor into the periplasm. There are two possibilities, one in which the plug domain is expelled into the periplasm making way for the ferricsiderophore complex and the second in which the plug domain undergoes structural rearrangement to form a channel through which the complex slides into the periplasm. Multiple alignment studies involving protein sequences of a large number of outer membrane receptor proteins that transport ferricsiderophores have identified several conserved residues. All of the conserved residues are located within the plug and barrel domain below the ligand binding site. We have substituted a number of these residues in FepA and FhuA with either alanine or glutamine resulting in substantial changes in the chemical properties of the residues. This was done to study the effect of the substitutions on the transport of ferricsiderophores. Another strategy used was to create a disulfide bond between the residues located on two adjacent β-strands of the plug domain or between the residues of the plug domain and the β-barrel in FhuA by substituting appropriate residues with cysteine. We have looked for the variants where the transport is affected without altering the binding. The data suggest a distinct role of these residues in the mechanism of transport. Our data also indicate that these transporters share a common mechanism of transport and that the plug remains within the barrel and possibly undergoes rearrangement to form a channel to transport the ferricsiderophore from the binding site to the periplasm.  相似文献   

7.
The hydroxamate siderophore receptor FhuA is a TonB-dependent outer membrane protein of Escherichia coli composed of a C-terminal 22-stranded beta-barrel occluded by an N-terminal globular cork domain. During siderophore transport into the periplasm, the FhuA cork domain has been proposed to undergo conformational changes that allow transport through the barrel lumen; alternatively, the cork may be completely displaced from the barrel. To probe such changes, site-directed cysteine mutants in the cork domain (L109C and Q112C) and in the barrel domain (S356C and M383C) were created within the putative siderophore transport pathway. Molecular modeling predicted that the double cysteine mutants L109C/S356C and Q112C/M383C would form disulfide bonds, thereby tethering the cork and barrel domains. The double cysteine FhuA mutants were denatured under nonreducing conditions and fluorescently labeled with thiol-specific Oregon Green maleimide. Subsequent SDS-PAGE analysis revealed two distinct species: FhuA containing a disulfide bond and FhuA with free sulfhydryl groups. To address the role of the putative siderophore transport pathway and to evaluate possible rearrangements of the cork domain during ferricrocin transport, disulfide bond formation was enhanced by an oxidative catalyst. Cells containing double cysteine FhuA mutants that were subjected to oxidation during ferricrocin transport exhibited disulfide bond formation to near completion. After disulfide tethering of the cork to the barrel, ferricrocin transport was equivalent to transport by untreated cells. These results demonstrate that blocking the putative siderophore transport pathway does not abrogate ferricrocin uptake. We propose that, during siderophore transport through FhuA, the cork domain remains within the barrel rather than being displaced.  相似文献   

8.
Omp85 transporters mediate protein insertion into, or translocation across, membranes. They have a conserved architecture, with POTRA domains that interact with substrate proteins, a 16‐stranded transmembrane β barrel, and an extracellular loop, L6, folded back in the barrel pore. Here using electrophysiology, in vivo biochemical approaches and electron paramagnetic resonance, we show that the L6 loop of the Omp85 transporter FhaC changes conformation and modulates channel opening. Those conformational changes involve breaking the conserved interaction between the tip of L6 and the inner β‐barrel wall. The membrane‐proximal POTRA domain also exchanges between several conformations, and the binding of FHA displaces this equilibrium. We further demonstrate a dynamic, physical communication between the POTRA domains and L6, which must take place via the β barrel. Our findings thus link all three essential components of Omp85 transporters and indicate that they operate in a concerted fashion in the transport cycle.  相似文献   

9.
Navizet I  Lavery R  Jernigan RL 《Proteins》2004,54(3):384-393
The movement of the myosin motor along an actin filament involves a directed conformational change within the cross-bridge formed between the protein and the filament. Despite the structural data that has been obtained on this system, little is known of the mechanics of this conformational change. We have used existing crystallographic structures of three conformations of the myosin head, containing the motor domain and the lever arm, for structural comparisons and mechanical studies with a coarse-grained elastic network model. The results enable us to define structurally conserved domains within the protein and to better understand myosin flexibility. Notably they point to the role of the light chains in rigidifying the lever arm and to changes in flexibility as a consequence of nucleotide binding.  相似文献   

10.
Proteins of the Omp85 family chaperone the membrane insertion of β‐barrel‐shaped outer membrane proteins in bacteria, mitochondria, and probably chloroplasts and facilitate the transfer of nuclear‐encoded cytosolically synthesized preproteins across the outer envelope of chloroplasts. This protein family is characterized by N‐terminal polypeptide transport‐associated (POTRA) domains and a C‐terminal membrane‐embedded β‐barrel. We have investigated a recently identified Omp85 family member of Arabidopsis thaliana annotated as P39. We show by in vitro and in vivo experiments that P39 is localized in chloroplasts. The electrophysiological properties of P39 are consistent with those of other Omp85 family members confirming the sequence based assignment of P39 to this family. Bioinformatic analysis showed that P39 lacks any POTRA domain, while a complete 16 stranded β‐barrel including the highly conserved L6 loop is proposed. The electrophysiological properties are most comparable to Toc75‐V, which is consistent with the phylogenetic clustering of P39 in the Toc75‐V rather than the Toc75‐III branch of the Omp85 family tree. Taken together P39 forms a pore with Omp85 family protein characteristics. The bioinformatic comparison of the pore region of Toc75‐III, Toc75‐V, and P39 shows distinctions of the barrel region most likely related to function. Proteins 2017; 85:1391–1401. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Choi S  Jeon J  Yang JS  Kim S 《Proteins》2008,71(1):68-80
Symmetry plays significant roles in protein structure and function. Particularly, symmetric interfaces are known to act as switches for two-state conformational change. Membrane proteins often undergo two-state conformational change during the transport process of ion channels or the active/inactive transitions in receptors. Here, we provide the first comprehensive analyses of internal repeat symmetry in membrane proteins. We examined the known membrane protein structures and found that, remarkably, nearly half of them have internal repeat symmetry. Moreover, we found that the conserved cores of these internal repeats are positioned at the interface of symmetric units when they are mapped on structures. Because of the large sequence divergence that occurs between internal repeats, the inherent symmetry present in protein sequences often has only been detected after structure determination. We therefore developed a sensitive procedure to predict the internal repeat symmetry from sequence information and identified 4653 proteins that are likely to have internal repeat symmetry.  相似文献   

12.
Activation of heterotrimeric G proteins by their cognate seven transmembrane domain receptors is believed to involve conformational changes propagated from the receptor to the G proteins. However, the nature of these changes remains unknown. We monitored the conformational rearrangements at the interfaces between receptors and G proteins and between G protein subunits by measuring bioluminescence resonance energy transfer between probes inserted at multiple sites in receptor-G protein complexes. Using the data obtained for the alpha(2A)AR-G alpha(i1) beta1gamma2 complex and the available crystal structures of G alpha(i1) beta1gamma2, we propose a model wherein agonist binding induces conformational reorganization of a preexisting receptor-G protein complex, leading the G alpha-G betagamma interface to open but not dissociate. This conformational change may represent the movement required to allow nucleotide exit from the G alpha subunit, thus reflecting the initial activation event.  相似文献   

13.
TonB-dependent transporters (TBDTs) are bacterial outer membrane proteins that internalize nutrients such as vitamin B12, metal complexes, heme, some carbohydrates, etc. In addition to their transport activity, several TBDTs are also involved in a signalling cascade from the cell surface into the cytoplasm, via their periplasmic signalling domain. Here we report the backbone and side chain resonance assignments of the signalling domain of HasR, a TonB-dependent outer membrane heme transporter from Serratia marcescens as a first step towards its structural study.  相似文献   

14.
Inter-domain linkers (IDLs)’ bridge flanking domains and support inter-domain communication in multi-domain proteins. Their sequence and conformational preferences enable them to carry out varied functions. They also provide sufficient flexibility to facilitate domain motions and, in conjunction with the interacting interfaces, they also regulate the inter-domain geometry (IDG). In spite of the basic intuitive understanding of the inter-domain orientations with respect to linker conformations and interfaces, we still do not entirely understand the precise relationship among the three. We show that IDG is evolutionarily well conserved and is constrained by the domain–domain interface interactions. The IDLs modulate the interactions by varying their lengths, conformations and local structure, thereby affecting the overall IDG. Results of our analysis provide guidelines in modelling of multi-domain proteins from the tertiary structures of constituent domain components.  相似文献   

15.
细菌内依赖TonB的外膜铁转运体的研究进展   总被引:1,自引:0,他引:1  
铁是细菌所必需的微量营养元素,但由于易被氧化溶解性低,生物体的利用率大大降低。细菌在进化过程中形成多种策略来吸收环境中低浓度的铁,不同类型铁的吸收通过外膜上依赖TonB的转运体(TonB-dependent transporters,TBDTs)完成,TBDTs结合不同形式的铁复合物,通过内膜上的TonB-ExbB-ExbD复合物提供能量完成转运,对其机制的研究一直是微生物基础生命活动研究中的热点问题。近年来新鉴定了一些TBDTs的结构,并对其功能和转运机制有了更深入的研究,对此进行了综述,不仅有助于进一步揭示细菌的铁转运机制,而且有助于寻找新的靶位点以开发新的治疗药物。  相似文献   

16.
BtuB is an outer membrane protein responsible for the uptake of vitamin B12 by Escherichia coli. It belongs to a family of bacterial transport proteins that derive energy for transport by coupling to the trans-periplasmic energy-coupling protein TonB. Using site-directed spin labeling and EPR we investigated the structure and substrate-induced changes in the TonB box, a highly conserved region in all TonB dependent transporters that may couple to TonB. In the absence of substrate, the line widths and collision parameters from EPR are consistent with this domain existing in a structured helical conformation that contacts the barrel of the transporter. Addition of substrate converts this segment into an extended structure that is highly dynamic, disordered and probably extended into the periplasm. This structural change demonstrates that the TonB box cycles between sequestered and accessible states in a substrate-dependent fashion. In a transport defective mutant of BtuB, this conformational cycle is disrupted and the TonB box appears to be extended even in the absence of substrate. These data suggest that the TonB box extends into the periplasm and interacts with TonB only in  相似文献   

17.
BAM is a conserved molecular machine, the central component of which is BamA. Orthologues of BamA are found in all Gram‐negative bacteria, chloroplasts and mitochondria where it is required for the folding and insertion of β‐barrel containing integral outer membrane proteins (OMPs) into the outer membrane. BamA binds unfolded β‐barrel precursors via the five polypeptide transport‐associated (POTRA) domains at its N‐terminus. The C‐terminus of BamA folds into a β‐barrel domain, which tethers BamA to the outer membrane and is involved in OMP insertion. BamA orthologues are found in all Gram‐negative bacteria and appear to function in a species‐specific manner. Here we investigate the nature of this species‐specificity by examining whether chimeric Escherichia coli BamA fusion proteins, carrying either the β‐barrel or POTRA domains from various BamA orthologues, can functionally replace E. coli BamA. We demonstrate that the β‐barrel domains of many BamA orthologues are functionally interchangeable. We show that defects in the orthologous POTRA domains can be rescued by compensatory mutations within the β‐barrel. These data reveal that the POTRA and barrel domains must be precisely aligned to ensure efficient OMP insertion.  相似文献   

18.
With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure–function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two‐domain proteins. We also use information from the three‐dimensional structures of individual domains of two‐domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (~85%) and specific (~95%) to the domain–domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain–domain interaction, rigid‐body docking was able to provide us with accurate full‐length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions. Proteins 2014; 82:1219–1234. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Interfaces of contact between proteins play important roles in determining the proper structure and function of protein–protein interactions (PPIs). Therefore, to fully understand PPIs, we need to better understand the evolutionary design principles of PPI interfaces. Previous studies have uncovered that interfacial sites are more evolutionarily conserved than other surface protein sites. Yet, little is known about the nature and relative importance of evolutionary constraints in PPI interfaces. Here, we explore constraints imposed by the structure of the microenvironment surrounding interfacial residues on residue evolutionary rate using a large dataset of over 700 structural models of baker’s yeast PPIs. We find that interfacial residues are, on average, systematically more conserved than all other residues with a similar degree of total burial as measured by relative solvent accessibility (RSA). Besides, we find that RSA of the residue when the PPI is formed is a better predictor of interfacial residue evolutionary rate than RSA in the monomer state. Furthermore, we investigate four structure-based measures of residue interfacial involvement, including change in RSA upon binding (ΔRSA), number of residue-residue contacts across the interface, and distance from the center or the periphery of the interface. Integrated modeling for evolutionary rate prediction in interfaces shows that ΔRSA plays a dominant role among the four measures of interfacial involvement, with minor, but independent contributions from other measures. These results yield insight into the evolutionary design of interfaces, improving our understanding of the role that structure plays in the molecular evolution of PPIs at the residue level.  相似文献   

20.
Residue types at the interface of protein–protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3‐D structures of homologous transient PPCs, that the 3‐D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter‐residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号