首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some physical and chemical properties of DNA isolated from the dinoflagellate Woloszynskia bostoniensis were determined. Analytical cesium chloride gradient centrifugation gave a major component and a minor component banding at 1.719 and 1.693 g/cm, respectively. Thermal denaturation in 0.1 SSC showed a broad transition with a Tm of 70.5° C. Derivation of this curve indicated that two components were present having Tm values of 66° C and 70° C. Base composition analysis showed a GC content of 48.1% and a high degree of thymine replacement by 5-hydroxymethyluracil. Two minor bases, identified as 5-methylcytosine and N6-methyladenine, were also detected. Reassociation kinetics showed a typical eukaryotic reassociation pattern with 45% repetitive and 55% single copy sequences.  相似文献   

2.
3.
The heat tolerance of 8 temperate- and 1 subtropical-origin C3 species as well as 17 tropical-origin ones, including C3, C4, and CAM species, was estimated using both F0-T curve and the ratio of chlorophyll fluorescence parameters, prior to and after high temperature treatment. When leaves were heated at the rate of ca. 1 °C min−1 in darkness, the critical temperature (Tc) varied extensively among species. The Tc's of all 8 temperate-origin species ranged between 40–46 °C in winter (mean temperature 16–19 °C), and between 32–48 °C in summer (mean temperature ca. 30 °C). Those for 1 subtropical- and 12 tropical-origin C3 species ranged between 25–44 °C and 35–48 °C, and for 1 CAM and 4 C4 species were 41–47 and 45–46 °C, respectively. Acclimating three C3 herbaceous plants at high temperature (33/28 °C, day/night) for 10 d in winter caused their Tc's rising to nearly the values measured in summer. When leaves were exposed to 45 °C for 20 min and then kept at room temperature in darkness for 1 h, a significant correlation between RFv/m (the ratio of Fv/Fm before and after 45 °C treatment) and Tc was observed for all tested temperate-origin C3 species as well as tropical-origin CAM and C4 species. However, F0 and Fv/Fm of the tropical-origin C3 species were less sensitive to 45 °C treatment, regardless of a large variation of Tc; thus no significant correlation was found between their RFv/m and Tc. Thus Tc might not be a suitable index of heat tolerance for plants with wide range of environmental adaptation. Nevertheless, Tc's of tropical origin C3 species, varying and showing high plasticity to seasonal changes and temperature treatment, appeared suitable for the estimation of the degree of temperature acclimation in the same species.  相似文献   

4.
Principal component analysis (PCA) of published DNA-relatedness data showed the usefulness of this method in displaying relationships among closely related bacteria. Very similar ordinations were obtained when relative binding ratios (RBR) at 60°C or 75°C or ΔT m values were used to form the data matrix. A curvilinear relationship and a (quasi) linear relationship were found, respectively, between 75°C and 60°C RBR and ΔT m and 60°C RBR. These statistical relationships explain the similarity of PCA results using either measurement (60°C RBR, 75°C RBR, or ΔT m). Use of PCA is suggested to delineate groups within a complex set of DNA-relatedness data. The level of ΔT m within groups and between groups should help decide whether these groups are genospecies.  相似文献   

5.
A Yaron  N Tal  A Berger 《Biopolymers》1972,11(12):2461-2481
The sequence-ordered copolymer poly-(Lys-Ala-Ala) was synthesized by polycondensation of the N-hydroxysuccinimide ester of ε,Z-Lys-Ala-Ala and deprotection of the polymerization product. A fraction of molecular weight 13,000 obtained by ion-exchange chromatography was investigated. The polymer is freely soluble in water at all pH values, and is completely digested by trypsin and elastase. From CD and ORD data it was concluded that in water at 1°C the ionized form (at pH 6.5) of the polymer is helical. On heating, helix-coil transition curves were obtained with a midpoint, Tm, depending on salt concentration. In salt-free water Tm = 12.3°C and in 0.2M NaCl Tm = 28.5°C. Adding MeOH, causes an increase in the helical content of the polymer (half helicity at 20% MeOH, without salt, at 29°C). Guanidine·HCl was shown to decrease the helicity. At 1°C half helicity. The nonionized polymer helix is more stable (Tm~90°C). At the high pH, at 60°C, when concentration of the polymer is higher than 1.9 × 10-2M, a precipitate is formed which redissolves on cooling with the original helicity. This does not occur in the presence of 50% MeOH. By comparison with polylysine it was concluded that replacing two-thirds of the lysine residues in polylysine by alanine leads to a polymer forming a more stable α-helix, when fully ionized. This is essentially due to the diminished coulombic repulsion. Uncharged lysine residues are comparable to alanine residues in their helix-forming tendency since the sequential polymer as well as one-third ionized polylysine are helical to approximately the same extent at room temperature.  相似文献   

6.
We examined the biophysical properties of cuticular lipids isolated from the housefly, Musca domestica. Melting temperatures (Tm) of surface lipids isolated from female houseflies decreased from 39.3 °C to 35.3 °C as the females attained sexual maturity and produced sex pheromone, whereas those prepared from males did not change with age. Lipids melted over a 10–25 °C temperature range, and their physical properties were a complex function of the properties of the component lipids. The Tm of total cuticular lipids was slightly below that of cuticular hydrocarbons (HC), the predominant lipid fraction. Hydrocarbons were further fractionated into saturated, unsaturated, and methyl-branched components. The order of decreasing Tm was total alkanes > total HCs > methyl-branched alkanes > alkenes. For 1-day-old flies, measured Tms of hydrocarbons were 1.3–5.5 °C lower than Tms calculated from a weighted average of Tms for saturated and unsaturated components. For 4-day-old flies, calculated Tms underestimated Tm by 11–14 °C. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Abstract The germination of Sorghum bicolor seeds of 9 genotypes was tested at temperatures between 8°C and 48°C on a thermal gradient plate. Samples were tested from three regions of the panicle expected to differ in temperature during grain filling. Seeds of a tenth genotype, SPV 354, produced in controlled-environment glasshouses at different panicle temperatures, were tested similarly. In addition, the emergence of SPV 354 was measured from planting depths of 2 and 5 cm at mean soil temperatures of 15, 20 and 25°C. Four methods of calculating mean germination rate for the nine genotypes were compared. Germination characters like base, optimum and maximum temperature (Tb, To, Tm), thermal time (θ)and the germination rate at To(Rmax showed only small differences between methods. There was a range of genotypic variation in all characters: Tb 8.5–11.9°C; To, 33.2–37.5°C; Tm, 46.8–49.2°C; θ, 23.4–38.0°Cd; Rmax, 0.69–1.14-d-1. In contrast, mean germinability (G) was between 90% and 100% over the temperature range 13–40°C. Panicle temperature had no effect on any germination character in SPV 354. However, deeper burial increased θ for emergence and decreased G, irrespective of soil temperature except at 5 cm. Increasing panicle temperature, by reducing seed size, reduced G and increased θ by about 10% only at 15°C and 5 cm depth.  相似文献   

8.
The design of microarrays is currently based on studies focusing on DNA hybridization reaction in bulk solution. However, the presence of a surface to which the probe strand is attached can make the solution‐based approximations invalid, resulting in sub‐optimum hybridization conditions. To determine the effect of surfaces on DNA duplex formation, the authors studied the dependence of DNA melting temperature (Tm) on target concentration. An automated system was developed to capture the melting profiles of a 25‐mer perfect‐match probe–target pair initially hybridized at 23°C. Target concentrations ranged from 0.0165 to 15 nM with different probe amounts (0.03–0.82 pmol on a surface area of 1018 Å2), a constant probe density (5 × 1012 molecules/cm2) and spacer length (15 dT). The authors found that Tm for duplexes anchored to a surface is lower than in‐solution, and this difference increases with increasing target concentration. In a representative set, a target concentration increase from 0.5 to 15 nM with 0.82 pmol of probe on the surface resulted in a Tm decrease of 6°C when compared with a 4°C increase in solution. At very low target concentrations, a multi‐melting process was observed in low temperature domains of the curves. This was attributed to the presence of truncated or mismatch probes. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

9.
Abstract The effect of seven constant temperatures of 15, 20, 25, 27, 30, 35 and 37°C on developmental time of Neoseiulus barkeri Hughes were determined in laboratory conditions under 65%± 5% RH and a photoperiod of 12 : 12 (L : D) h on nymphal stages of Tetranychus urticae Koch. Total developmental time of females (from egg to adult emergence) at the above‐mentioned temperatures was 26.59, 14.43, 6.32, 5.64, 4.59, 3.98 and 4.67 days, respectively. Developmental rate of the N. barkeri increased as temperature increased from 15 to 35°C, but declined at 37°C. A linear and two nonlinear models were fitted to developmental rate of immature stages of N. barkeri to predict the developmental rate as a function of temperature, as well as to estimate the thermal constant (K) and critical temperatures (i.e., Tmin, Topt and Tmax). The estimated values of the Tmin and K for total developmental time using the linear model were 12.07°C and 86.20 degree‐days (DD), respectively. The Tmin and Tmax estimated by the Sharpe‐Schoolfield‐Ikemoto (SSI) model were 11.90°C and 37.41°C, respectively. The estimated Topt for overall immature stage development of N. barkeri by the Lactin and SSI models were 33.89°C and 24.51°C, respectively. Based on the biological criteria of model evaluation, the linear and SSI models were found to be the best models for describing the developmental rate of overall immature stages of N. barkeri and estimating the temperature thresholds.  相似文献   

10.
The present study investigated whether increasing morning rectal temperatures (Trec) to evening levels, or increasing morning and evening Trec to an “optimal” level (38.5°C), resulting in increased muscle temperatures (Tm), would offset diurnal variation in repeated sprint (RS) performance in a causal manner. Twelve trained males underwent five sessions [age (mean ± SD) 21.0 ± 2.3 years, maximal oxygen consumption (V?O2max) 60.0 ± 4.4 mL.kg–1 min–1, height 1.79 ± 0.06 m, body mass 78.2 ± 11.8 kg]. These included control morning (M, 07:30 h) and evening (E, 17:30 h) sessions (5-min warm-up), and three further sessions consisting of a warm-up morning trial (ME, in 39–40°C water) until Trec reached evening levels; two “optimal” trials in the morning and evening (M38.5 and E38.5, in 39–40°C water) respectively, until Trec reached 38.5°C. All sessions included 3 × 3-s task-specific warm-up sprints, thereafter 10 × 3-s RS with 30-s recoveries were performed a non-motorised treadmill. Trec and Tm measurements were taken at the start of the protocol and following the warm-up periods. Values for Trec and Tm at rest were higher in the evening compared to morning values (0.48°C and 0.69°C, p < 0.0005). RS performance was lower (7.8–8.3%) in the M for distance covered (DC; p = 0.002), average power (AP; p = 0.029) and average velocity (AV; p = 0.002). Increasing Trec in the morning to evening values or optimal values (38.5°C) did not increase RS performance to evening levels (p = 1.000). However, increasing Trec in the evening to “optimal” level through a passive warm-up significantly reduced DC (p = 0.008), AP (p < 0.0005) and AV (p = 0.007) to values found in the M condition (6.0–6.9%). Diurnal variation in Trec and Tm is not wholly accountable for time-of-day oscillations in RS performance on a non-motorised treadmill; the exact mechanism(s) for a causal link between central temperature and human performance are still unclear and require more research.  相似文献   

11.
Development and reproductive traits of Tetranychus macfarlanei Baker & Pritchard (Acari: Tetranychidae) were investigated on kidney bean, Phaseolus vulgaris L., at eleven constant temperatures. Tetranychus macfarlanei was able to develop and complete its life cycle at temperatures ranging from 17.5 to 37.5°C. At 15 and 40°C, a few eggs (2–4%) hatched but further development was arrested. Development from egg to adult was slowest at 17.5°C and fastest at 35°C for both females and males. Using Ikemoto and Takai’s linear model, the estimated lower developmental thresholds for egg-to-female adult, egg-to-male adult and egg-to-egg development were 12.9–13.0°C. The thermal constants for the respective stages were 110.85, 115.99 and 125.32 degree-days (DD). The intrinsic optimum temperatures (T Φ) calculated by non-linear SSI model were determined as 24.4, 24.4 and 24.2°C for egg-to-female adult, egg-to-male adult and egg-to-egg development, respectively. The net reproductive rate (R 0) was highest at 25°C (167.4 females per female) and lowest at 17.5°C (42.6 females per female). The intrinsic rate of natural increase, r m, increased linearly with the rising of temperature from 0.102 at 17.5°C to 0.441 day−1 at 35°C. These values suggested that T. macfarlanei could be growing quickly in response to increasing temperatures from 17.5 to 35°C and provide a basis for predicting its potential geographical range.  相似文献   

12.
A dual Hg–Au amalgam electrode is used to detect S-sulfocysteine (SSC) in this study. There exist two main components in the acetonitrile (ACN) rat brain extracts, namely, Cl and GSSG (oxidized glutathione), that are active in our detection system (GSH is not extracted in ACN). Two strong anion-exchange columns from different companies were used to separate the samples under different conditions, but SSC and Cl were not separated at the optimum detection pH of 5.2. The signal from Cl was greatly decreased by lowering the potential at the downstream electrode, though it cannot be completely eliminated. While a silver cartridge removed Cl from micromoles to several millimoles without any negative effect on the SSC signal in aqueous standards, a large negative peak which interferes with SSC detection was unfortunately introduced when a silver cartridge was applied to brain tissue samples. However, SSC and Cl in the samples are successfully separated by ion-modified reversed-phase LC in acetate buffer at the optimum detection pH (5.2). The separation conditions are 20 mM acetic acid, 2% methanol, 0.5 mM cetyltrimethylammonium p-toluene sulfonate (CTMA) (pH 5.2). Most importantly, the sensitivity of SSC under the optimum separation conditions is not sacrificed. The detection limit is 8 nM (20 μl injected).  相似文献   

13.
Apo and holo forms of lactoferrin (LF) from caprine and bovine species have been characterized and compared with regard to the structural stability determined by thermal denaturation temperature values (T m), at pH 2.0–8.0. The bovine lactoferrin (bLF) showed highest thermal stability with a T m of 90 ± 1°C at pH 7.0 whereas caprine lactoferrin (cLF) showed a lower T m value 68 ± 1°C. The holo form was much more stable than the apo form for the bLF as compared to cLF. When pH was gradually reduced to 3.0, the T m values of both holo bLF and holo cLF were reduced showing T m values of 49 ± 1 and 40 ± 1°C, respectively. Both apo and holo forms of cLF and bLF were found to be most stable at pH 7.0. A significant loss in the iron content of both holo and apo forms of the cLF and bLF was observed when pH was decreased from 7.0 to 2.0. At the same time a gradual unfolding of the apo and holo forms of both cLF and bLF was shown by maximum exposure of hydrophobic regions at pH 3.0. This was supported with a loss in α-helix structure together with an increase in the content of unordered (aperiodic) structure, while β structure seemed unchanged at all pH values. Since LF is used today as fortifier in many products, like infant formulas and exerts many biological functions in human, the structural changes, iron binding and release affected by pH and thermal denaturation temperature are important factors to be clarified for more than the bovine species.  相似文献   

14.
The effect of different denaturation and hybridization procedures on the efficiency of in situ 3H-cRNA hybridization with DNA in the polytene chromosomes of Drosophila hydei was investigated.Denaturation of the DNA in the squash preparations with 90% formamide in 0.1 × SSC at 65 °C for 2.5 h gave a significantly higher retention of radioactivity following in situ hybridization than did denaturation by 30 sec incubation in boiling 0.1 × SSC.A comparison of the effect of various SSC concentrations in the hybridization mixture revealed that among the SSC concentrations tested, 3 × SSC or 4 × SSC gave the highest efficiency of hybrid formation.Hybridization in 50% formamide at 20 °C resulted in continuing hybrid formation over a period of 3.5 h, the majority of the cRNA/DNA hybrids being formed within the first 10 min of the incubation period. The thermal dissociation profile of in situ cRNA/DNA hybrids formed in 50% formamide, 4 × SSC at 20 °C, as determined in 0.1 × SSC indicated a Tm of 66 °C. The shape of the profile and the results of competition experiments suggested a high fidelity of base-matching in the in situ 3H-cRNA/DNA hybrids.Non-chromosomal background labeling in autoradiographs of polytene chromosomes hybridized with 3H-cRNA was effectively reduced by adding a 200–1000 fold excess of cold 28S + 18S RNA.  相似文献   

15.
We have used differential scanning calorimetry (DSC) to determine the unfolding properties of commercial products of human serum albumin (HSA) prepared from pooled human blood, transgenic yeast, and transgenic rice. The initial melting temperatures (Tm1) for the unfolding transitions of the HSA products varied from 62°C to 75°C. We characterized the samples for purity, fatty acid content, and molecular weight. The effects of adding fatty acids, heat pasteurization, and a low pH defatting technique on the transition temperatures were measured. Defatted HSA has a structure with the lowest stability (Tm of ~62°C). When fatty acids are bound to HSA, the structure is stabilized (Tm of ~64–72°C), and prolonged heating (pasteurization at 60°C) results in a heat‐stabilized structural form containing fatty acids (Tm of ~75–80°C). This process was shown to be reversible by a low pH defatting step. This study shows that the fatty acid composition and bioprocessing history of the HSA commercial products results in the large differences in the thermal stability. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:62–69, 2015  相似文献   

16.
Quantitation of mRNA immobilized on nitrocellulose filters is an essential aspect of some studies in molecular biology. Hybridization of oligo(dT)18 to the poly(A) tails of mRNA can be used to measure filter-bound mRNA and thus provides a basis for comparing abundance of specific mRNAs. Hybridization rate of 32P-labeled oligo(dT)18 in 0.75 M NaCl, 75 mM sodium citrate, pH 7 (5 × SSC) to immobilized RNA was maximal at 25°C. Filters were fully hybridized under these conditions within 1 hr when the oligo(dT)18 concentration was 10 pmol/ml or higher. Salt dependence of the dissociation temperature (Td) of oligo(dT)18:RNA duplex on filters was described by the equation Td = 42 − 20log10[molar Na+] (°C). With stringent washing of the duplex (four 5-min washes in 2 × SSC at room temperature), oligo(dT)18 gave no signal with plasmid DNA, rRNA, or tRNA. We have found that olig(dT)18 can be used to normalize signal strengths rapidly and conveniently from total or oligo(dT)-selected eukaryotic RNA.  相似文献   

17.
The effects of temperature on the development and survival of Lycaeides argyrognomon were examined in the laboratory. The eggs, larvae and pupae were reared at temperatures of 15, 17.5, 20, 25, 30 and 33°C under a long‐day photoperiod of 16‐h light and 8‐h darkness. The survival rates of the first–third instars ranged from 40.0 to 82.4%. The mortalities of the fourth instar were lower than those of the first–third instars. The development time of the overall immature stage decreased from 78.33 days at 15°C to 21.07 days at 30°C, and then increased to 24.33 days at 33°C. The common linear model and the Ikemoto–Takai model were used to estimate the thermal constant (K) and the developmental zero (T0). The values of T0 and K for the overall immature stages were 10.50°C and 418.83 degree‐days, and 9.71°C and 451.68 degree‐days by the common model and the Ikemoto–Takai model, respectively. The upper temperature thresholds (Tmax) and the optimal temperatures (Topt) of the egg, the first–third instars and the overall immature stages were estimated by the three nonlinear models. The ranges of Topt estimated were from 30.33°C to 32.46°C in the overall immature stages and the estimates of Tmax of the overall immature stages by the Briere‐1 and the Briere‐2 models were 37.18°C and 33.00°C, respectively. The method to predict the developmental period of L. argyrognomon using the nonlinear models was discussed based on the data of the average temperature per hour.  相似文献   

18.
Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short‐term temperature dependencies of Antarctic soil bacterial community growth rates, using the leucine incorporation technique, in order to predict future changes in temperature sensitivity of resident soil bacterial communities. Soil samples were collected along a climate gradient consisting of locations on the Antarctic Peninsula (Anchorage Island, 67 °34′S, 68 °08′W), Signy Island (60 °43′S, 45 °38′W) and the Falkland Islands (51 °76′S 59 °03′W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell‐field habitats. The bacterial communities were adapted to the mean annual temperature of their environment, as shown by a significant correlation between the mean annual soil temperature and the minimum temperature for bacterial growth (Tmin). Every 1 °C rise in soil temperature was estimated to increase Tmin by 0.24–0.38 °C. The optimum temperature for bacterial growth varied less and did not have as clear a relationship with soil temperature. Temperature sensitivity, indicated by Q10 values, increased with mean annual soil temperature, suggesting that bacterial communities from colder regions were less temperature sensitive than those from the warmer regions. The OTC warming (generally <1 °C temperature increases) over 3 years had no effects on temperature relationship of the soil bacterial community. We estimate that the predicted temperature increase of 2.6 °C for the Antarctic Peninsula would increase Tmin by 0.6–1 °C and Q10 (0–10 °C) by 0.5 units.  相似文献   

19.
 This study evaluates the effect of different levels of insulation on esophageal (T es) and rectal (T re) temperature responses during and following moderate exercise. Seven subjects completed three 18-min bouts of treadmill exercise (75% VO2max, 22°C ambient temperature) followed by 30 min of recovery wearing either: (1) jogging shoes, T-shirt and shorts (athletic clothing); (2) single-knit commercial coveralls worn over the athletic clothing (coveralls); or (3) a Canadian Armed Forces nuclear, bacteriological and chemical warfare protective overgarment with hood, worn over the athletic clothing (NBCW overgarment). T es was similar at the start of exercise for each condition and baseline T re was ∼0.4°C higher than T es. The hourly equivalent rate of increase in T es during the final 5 min of exercise was 1.8°C, 3.0°C and 4.2°C for athletic clothing, coveralls and NBCW overgarment respectively (P<0.05). End-exercise T es was significantly different between conditions [37.7°C (SEM 0.1°C), 38.2°C (SEM 0.2°C and 38.5°C (SEM 0.2°C) for athletic clothing, coveralls and NBCW overgarment respectively)] (P<0.05). No comparable difference in the rate of temperature increase for T re was demonstrated, except that end-exercise T re for the NBCW overgarment condition was significantly greater (0.5°C) than that for the athletic clothing condition. There was a drop in T es during the initial minutes of recovery to sustained plateaus which were significantly (P<0.05) elevated above pre-exercise resting values by 0.6°C, 0.8°C and 1.0°C, for athletic clothing, coveralls, and NBCW overgarment, respectively. Post-exercise T re decreased very gradually from end-exercise values during the 30-min recovery. Only the NBCW overgarment condition T re was significantly elevated (0.3°C) above the athletic clothing condition (P<0.05). In conclusion, T es is far more sensitive in reflecting the heat stress of different levels of insulation during exercise and post-exercise than T re. Physiological mechanisms are discussed as possible explanations for the differences in response. Received: 30 June 1998 / Accepted: 19 February 1999  相似文献   

20.
Sedimentation velocity runs as a function of temperature in the region of the alkaline helix-coil transition have enabled us to demonstrate the existence of stable two-stranded intermediates in the strand-separation process for T7 DNA. The strand-separation transition under these conditions has an intrinsic breadth of ~1°C, and within this temperature range (Tm + 2°C < T < Tm + 3°C) the intermediate forms are progressively converted (as a function of temperature) to single-stranded DNA. Parallel characterizations of the strand-separation transition by viscosity and absorbance–renaturation studies in the alkaline solvent are entirely consistent with the sedimentation experiments. Comparison of the experimental mean sedimentation coefficient of the intermediate forms with theoretical predictions for branched structures suggests that in these molecules the two strands are connected at a single point, not centrally located with respect to the ends of the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号