首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Stem cells are the target of mutations that can lead to life threatening diseases. However, stem cell populations tend to be small and therefore clonal expansion of mutant cells is highly sensitive to stochastic fluctuations. The evolutionary dynamics of mutations in these cells is discussed, taking into consideration the impact of such mutations on the reproductive fitness of cells. We show how stochastic effects can explain clinical observations, including extinction of acquired clonal stem cell disorders.  相似文献   

4.
Clones of ectopic stem cells in the regeneration of muscle defects in vivo   总被引:1,自引:0,他引:1  
Yang R  Chen M  Lee CH  Yoon R  Lal S  Mao JJ 《PloS one》2010,5(10):e13547
Little is known about whether clones of ectopic, non-muscle stem cells contribute to muscle regeneration. Stem/progenitor cells that are isolated for experimental research or therapeutics are typically heterogeneous. Non-myogenic lineages in a heterogeneous population conceptually may compromise tissue repair. In this study, we discovered that clones of mononucleated stem cells of human tooth pulp fused into multinucleated myotubes that robustly expressed myosin heavy chain in vitro with or without co-culture with mouse skeletal myoblasts (C2C12 cells). Cloned cells were sustainably Oct4+, Nanog+ and Stro1+. The fusion indices of myogenic clones were approximately 16-17 folds greater than their parent, heterogeneous stem cells. Upon infusion into cardio-toxin induced tibialis anterior muscle defects, undifferentiated clonal progenies not only engrafted and colonized host muscle, but also expressed human dystrophin and myosin heavy chain more efficaciously than their parent heterogeneous stem cell populations. Strikingly, clonal progenies yielded ~9 times more human myosin heavy chain mRNA in regenerating muscles than those infused with their parent, heterogeneous stem cells. The number of human dystrophin positive cells in regenerating muscles infused with clonal progenies was more than ~3 times greater than muscles infused with heterogeneous stem cells from which clonal progenies were derived. These findings suggest the therapeutic potential of ectopic myogenic clones in muscle regeneration.  相似文献   

5.
Quantifying the proliferative capacity of long-term hematopoietic stem cells in humans is important for bone marrow transplantation and gene therapy. Obtaining appropriate data is difficult, however, because the experimental tools are limited. We hypothesized that tracking clonal descendants originating from hematopoietic stem cells would be possible if we used clonal chromosome aberrations as unique tags of individual hematopoietic stem cells in vivo. Using FISH, we screened 500 blood T lymphocytes from each of 513 atomic bomb survivors and detected 96 clones composed of at least three cells with identical aberrations. The number of clones was inversely related to their population size, which we interpreted to mean that the progenitor cells were heterogeneous in the number of progeny that they could produce. The absolute number of progenitor cells contributing to the formation of the observed clones was estimated as about two in an unexposed individual. Further, scrutiny of ten clones revealed that lymphocyte clones could originate roughly equally from hematopoietic stem cells or from mature T lymphocytes, thereby suggesting that the estimated two progenitor cells are shared as one hematopoietic stem cell and one mature T cell. Our model predicts that one out of ten people bears a non- aberrant clone comprising >10% of the total lymphocytes, which indicates that clonal expansions are common and probably are not health-threatening.  相似文献   

6.
The concept of ‘field cancerization’ describes the clonal expansion of genetically altered, but morphologically normal cells that predisposes a tissue to cancer development. Here, we demonstrate that biased stem cell competition in the mouse small intestine can initiate the expansion of such clones. We quantitatively analyze how the activation of oncogenic K-ras in individual Lgr5+ stem cells accelerates their cell division rate and creates a biased drift towards crypt clonality. K-ras mutant crypts then clonally expand within the epithelium through enhanced crypt fission, which distributes the existing Paneth cell niche over the two new crypts. Thus, an unequal competition between wild-type and mutant intestinal stem cells initiates a biased drift that leads to the clonal expansion of crypts carrying oncogenic mutations.  相似文献   

7.
In cycling tissues that exhibit high turnover, tissue maintenance and repair are coordinated by stem cells. But, how frequently stem cells are replaced following differentiation, aging or injury remains unclear. By drawing together the results of recent lineage-tracing studies, we propose that tissue stem cells are routinely lost and replaced in a stochastic manner. We show that stem cell replacement leads to neutral competition between clones, resulting in two characteristic and recurring patterns of clone fate dynamics, which provide a unifying framework for interpreting clone fate data and for measuring rates of stem cell loss and replacement in vivo. Thus, we challenge the concept of the stem cell as an immortal, slow-cycling, asymmetrically dividing cell.  相似文献   

8.
OBJECTIVE: To test the hypothesis that dedifferentiated adult human cartilage chondrocytes (HAC) are a true multipotent primitive population. METHODS: Studies to characterize dedifferentiated HAC included cell cycle and quiescence analysis, cell fusion, flow-FISH telomere length assays, and ABC transporter analysis. Dedifferentiated HAC were characterized by flow cytometry, in parallel with bone marrow mesenchymal stem cells (MSC) and processed lipoaspirate (PLA) cells. The in vitro differentiation potential of dedifferentiated HAC was studied by cell culture under several inducing conditions, in multiclonal and clonal cell populations. RESULTS: Long-term HAC cultures were chromosomically stable and maintained cell cycle dynamics while showing telomere shortening. The phenotype of dedifferentiated HAC was quite similar to that of human bone marrow MSC. In addition, this population expressed human embryonic stem cell markers. Multiclonal populations of dedifferentiated HAC differentiated to chondrogenic, osteogenic, adipogenic, myogenic, and neurogenic lineages. Following VEGF induction, dedifferentiated HAC expressed characteristics of endothelial cells, including AcLDL uptake. A total of 53 clonal populations of dedifferentiated HAC were efficiently expanded; 17 were able to differentiate to chondrogenic, osteogenic, and adipogenic lineages. No correlation was observed between telomere length or quiescent population and differentiation potential in the clones assayed. CONCLUSION: Dedifferentiated HAC should be considered a human multipotent primitive population.  相似文献   

9.
Adult stem cells have potential use for several biomedical applications, including cell replacement therapy, gene therapy, and tissue engineering. However, such applications have been limited due to difficulties encountered in expanding functional adult stem cells. We have developed a new approach to the problem of adult stem cell expansion based on the suppression of asymmetric cell kinetics (SACK). We postulated that asymmetric cell kinetics, required for adult stem cell function, were a major barrier to their expansion in culture. As such, conversion of adult stem cells from asymmetric cell kinetics to symmetric cell kinetics would promote their exponential expansion and longterm propagation in culture. The purine nucleoside xanthosine (Xs), which promotes guanine ribonucleotide biosynthesis, can be used to reversibly convert cells from asymmetric cell kinetics to symmetric cell kinetics. We used Xs supplementation to derive clonal epithelial cell lines from adult rat liver that have properties of adult hepatic stem cells. The properties of two Xs-derived cell lines, Lig-8 and Lig-13, are described in detail and compared to properties of adult rat hepatic cell lines derived without Xs supplementation. The Xs-derived cell lines exhibit Xs-dependent asymmetric cell kinetics and Xs-dependent expression of mature hepatic differentiation markers. Interestingly, Lig-8 cells produce progeny with properties consistent with hepatocyte differentiation, while Lig-13 progeny cells have properties consistent with bile duct epithelium differentiation. A stable adult cholangiocyte stem cell line has not been previously described. Consistent with the principles of their derivation, the SACK-derived hepatic cell lines exhibit neither senescence nor tumorigenic properties, and their differentiation properties are stable after longterm culture. These characteristics of SACK-derived stem cell lines underscore asymmetric cell kinetics as an essential adult stem cell property with potential to be the basis for a general approach to expansion and propagation of diverse adult stem cells.  相似文献   

10.
11.
Age-related decline in the integrity of mitochondria is an important contributor to the human ageing process. In a number of ageing stem cell populations, this decline in mitochondrial function is due to clonal expansion of individual mitochondrial DNA (mtDNA) point mutations within single cells. However the dynamics of this process and when these mtDNA mutations occur initially are poorly understood. Using human colorectal epithelium as an exemplar tissue with a well-defined stem cell population, we analysed samples from 207 healthy participants aged 17–78 years using a combination of techniques (Random Mutation Capture, Next Generation Sequencing and mitochondrial enzyme histochemistry), and show that: 1) non-pathogenic mtDNA mutations are present from early embryogenesis or may be transmitted through the germline, whereas pathogenic mtDNA mutations are detected in the somatic cells, providing evidence for purifying selection in humans, 2) pathogenic mtDNA mutations are present from early adulthood (<20 years of age), at both low levels and as clonal expansions, 3) low level mtDNA mutation frequency does not change significantly with age, suggesting that mtDNA mutation rate does not increase significantly with age, and 4) clonally expanded mtDNA mutations increase dramatically with age. These data confirm that clonal expansion of mtDNA mutations, some of which are generated very early in life, is the major driving force behind the mitochondrial dysfunction associated with ageing of the human colorectal epithelium.  相似文献   

12.

Background

Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity.

Results

We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827.

Conclusions

We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents.  相似文献   

13.
Activated T cell death (ATCD) after peak clonal expansion is required for effective homeostasis of the immune system. Using a mouse model of T cell clonal expansion and contraction, we found that regulation of the proapoptotic kinase glycogen synthase kinase (GSK)-3beta plays a decisive role in determining the extent to which T cells are eliminated after activation. Involvement of GSK-3beta in ATCD was tested by measuring T cell survival after GSK-3beta inhibition, either ex vivo with chemical and pharmacological inhibitors or in vivo by retroviral expression of a dominant-negative form of GSK-3. We also measured amounts of inactivating phosphorylation of GSK-3beta (Ser9) in T cells primed in the presence or absence of LPS. Our results show that GSK-3beta activity is required for ATCD and that its inhibition promoted T cell survival. Adjuvant treatment in vivo maintained GSK-3beta (Ser9) phosphorylation in activated T cells, whereas with adjuvant-free stimulation it peaked and then decayed as the cells became susceptible to ATCD. We conclude that the duration of GSK-3beta inactivation determines activated T cell survival and that natural adjuvant stimulation decreases the severity of clonal contraction in part by keeping a critical proapoptotic regulatory factor, GSK-3beta, inactivated.  相似文献   

14.
15.
Identification of bronchioalveolar stem cells in normal lung and lung cancer   总被引:124,自引:0,他引:124  
Injury models have suggested that the lung contains anatomically and functionally distinct epithelial stem cell populations. We have isolated such a regional pulmonary stem cell population, termed bronchioalveolar stem cells (BASCs). Identified at the bronchioalveolar duct junction, BASCs were resistant to bronchiolar and alveolar damage and proliferated during epithelial cell renewal in vivo. BASCs exhibited self-renewal and were multipotent in clonal assays, highlighting their stem cell properties. Furthermore, BASCs expanded in response to oncogenic K-ras in culture and in precursors of lung tumors in vivo. These data support the hypothesis that BASCs are a stem cell population that maintains the bronchiolar Clara cells and alveolar cells of the distal lung and that their transformed counterparts give rise to adenocarcinoma. Although bronchiolar cells and alveolar cells are proposed to be the precursor cells of adenocarcinoma, this work points to BASCs as the putative cells of origin for this subtype of lung cancer.  相似文献   

16.
Human foreskin fibroblast-like cells were separated on the basis of DNA content and cell size by fluorescence-activated cell sorting. Subpopulations of "large" or "small" cells with the same (G1) DNA content were clonally expanded and found to contain predominantly nondividing or highly proliferative cells, respectively. From the rate of clonal growth, we deduce that small cells divide faster than large cells. Intermediate-sized cells were found to yield primarily smaller ("attenuated") clones. The clonal data can be incorporated into a previously reported kinetic model of clonal attenuation. This version of the model postulates that small "stem" cells yield larger daughters which have only a limited proliferative potential. We also postulate that a progressive increase in cell size can account for the decreasing concentration of DNA polymerase alpha, which has been reported in older cultures.  相似文献   

17.
Cancer heterogeneity is a significant factor in response to treatment and escape leading to relapse. Within an individual cancer, especially blood cancers, there exists multiple subclones as well as distinct clonal expansions unrelated to the clinically detected, dominant clone. Over time, multiple subclones and clones undergo emergence, expansion, and extinction. Although sometimes this intra-clonal and inter-clonal heterogeneity can be detected and/or quantified in tests that measure aggregate populations of cells, frequently, such heterogeneity can only be detected using single cell analysis to determine its frequency and to detect minor clones that may subsequently emerge to become drug resistant and dominant. Most genetic/genomic tests look at the pooled tumor population as a whole rather than at its individual cellular components. Yet, minor clones and cancer stem cells are unlikely to be detected against the background of expanded major clones. Because selective pressures are likely to govern much of what is seen clinically, single cell analysis allows identification of otherwise cryptic compartments of the malignancy that may ultimately mediate progression and relapse. Single cell analysis can track intra- or inter-clonal heterogeneity and provide useful clinical information, often before changes in the disease are detectable in the clinic. To a very limited extent, single cell analysis has already found roles in clinical care. Because inter- and intra-clonal heterogeneity likely occurs more frequently than can be currently appreciated on a clinical level, future use of single cell analysis is likely to have profound clinical utility.  相似文献   

18.
Intestinal stem cells, characterized by high Lgr5 expression, reside between Paneth cells at the small intestinal crypt base and divide every day. We have carried out fate mapping of individual stem cells by generating a multicolor Cre-reporter. As a population, Lgr5(hi) stem cells persist life-long, yet crypts drift toward clonality within a period of 1-6 months. We have collected short- and long-term clonal tracing data of individual Lgr5(hi) cells. These reveal that most Lgr5(hi) cell divisions occur symmetrically and do not support a model in which two daughter cells resulting from an Lgr5(hi) cell division adopt divergent fates (i.e., one Lgr5(hi) cell and one transit-amplifying [TA] cell per division). The cellular dynamics are consistent with a model in which the resident stem cells double their numbers each day and stochastically adopt stem or TA fates. Quantitative analysis shows that stem cell turnover follows a pattern of neutral drift dynamics.  相似文献   

19.
Feedback mechanisms within cell lineages are thought to be important for maintaining tissue homeostasis. Mathematical models that assume well-mixed cell populations, together with experimental data, have suggested that negative feedback from differentiated cells on the stem cell self-renewal probability can maintain a stable equilibrium and hence homeostasis. Cell lineage dynamics, however, are characterized by spatial structure, which can lead to different properties. Here, we investigate these dynamics using spatially explicit computational models, including cell division, differentiation, death, and migration / diffusion processes. According to these models, the negative feedback loop on stem cell self-renewal fails to maintain homeostasis, both under the assumption of strong spatial restrictions and fast migration / diffusion. Although homeostasis cannot be maintained, this feedback can regulate cell density and promote the formation of spatial structures in the model. Tissue homeostasis, however, can be achieved if spatially restricted negative feedback on self-renewal is combined with an experimentally documented spatial feedforward loop, in which stem cells regulate the fate of transit amplifying cells. This indicates that the dynamics of feedback regulation in tissue cell lineages are more complex than previously thought, and that combinations of spatially explicit control mechanisms are likely instrumental.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号