首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Homopolydeoxyribonucleotides, poly[dGuo], poly[dAdo], poly[dThd], and poly[dCyd], and calf thymus single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) aqueous solutions previously exposed to gamma radiation doses between 2 and 35 Gy, were studied by differential pulse voltammetry using a glassy carbon electrode. The interpretation of the voltammetric data was also supported by the electrophoretic migration profile obtained for the same ssDNA and dsDNA gamma-irradiated samples by nondenaturing agarose gel electrophoresis. The generation of 8-oxo-7,8-dihydroguanine, 2,8-dihydroxyadenine, 5-formyluracil, base-free sites, and single- and double-stranded breaks in the gamma-irradiated DNA samples was detected voltammetrically, with the amount depending on the irradiation time. It was found that the current peaks obtained for 8-oxoguanine increase linearly with the radiation dose applied to the nucleic acid sample, and values between 8 and 446 8-oxo-7,8-dihydroguanine (8-oxoGua) per 10(6) guanines per Gy were obtained according to the nucleic acid sample. The results showed that voltammetry can be used for monitoring and simultaneously characterizing different kinds of DNA damage caused by gamma radiation exposure.  相似文献   

2.
Capillary electrophoresis (CE) was used to monitor the laser-induced conversion of supercoiled pKOL8UV5 plasmid DNA into nicked conformers. The plasmid samples (0.1 mg/ml) were incubated in the absence or presence of 110 μmol/l ethidium bromide (EB) and then exposed to 110 J of argon laser radiation (488 nm). The nicked, open circular conformers were separated from the supercoiled DNA by a 15% increase in retention time. Approximately 90% of the control DNA was in the supercoiled form. Laser radiation in the presence of EB caused complete conversion of the supercoiled plasmid DNA into nicked conformers. Laser-induced fluorescence CE (LIF-CE) was about 100-fold more sensitive than UV-CE in the detection of these conformers. Agarose gel electrophoresis confirmed these findings and showed the presence of the nicked plasmid conformers. Based on these comparisons, CE is an efficient analytical tool for the identification of laser-induced conformational changes in plasmid DNA.  相似文献   

3.
Capillary electrophoresis (CE) is a convenient, fast and non-radioactive method with possibilities for automatization. To analyse single-stranded DNA molecules in a more automated way, we developed a heating device to melt double-stranded DNA fragments in the capillary during electrophoresis. In this study we used this device to obtain single-stranded DNA, necessary for the detection of point mutations in DNA using the single-strand conformation polymorphism technique. Results show that double-stranded DNA molecules can be melted on-line into single-stranded DNA molecules, although not for 100%. In an attempt to find universal electrophoretic conditions for the analysis of single-stranded DNA, we investigated the influence of several parameters on the yield of single-stranded DNA molecules and on the resolution of the single-stranded DNA peaks. We demonstrate that this heating device is a technical adjustment of CE which contributes to more automated analyses of DNA fragments.  相似文献   

4.
Damage to cellular DNA is implicated in the early stages of carcinogenesis and in the cytotoxicity of many anticancer agents, including ionizing radiation. Sensitive techniques are required for measuring cellular levels of DNA damage. We describe in detail a novel immunoassay that makes use of the resolving power of capillary electrophoresis and the sensitivity of laser-induced fluorescence detection. An example is given of the detection of thymine glycol in DNA produced by irradiation of human cells with a clinical dose of 2 Gy. A detection limit of approximately 10(-21) mol allowed us to monitor the repair of the lesion and to suggest that the cellular repair response may be inducible.  相似文献   

5.
There is a large body of evidence that stress-induced DNA damage may be responsible for cell lethality, cancer proneness and/or immune reaction. However, statistical features of their repair rate remain poorly documented. In order to interpret the shape of the radiation-induced DNA damage repair curves with a minimum of biological assumptions, we introduced the concept of repair probability, specific to any individual radiation-induced DNA damage, whatever its biochemical type. We strengthened the apparent paradox that the repair rate of a population of DNA damage is time-dependent even if the repair rate of the individual DNA damage is constant. Hence, the existing models, based on a dual approach of the DNA repair may be insufficient for describing the DNA repair rate over a large range of repair times. Since the repair probability of DNA damage cannot be assessed individually, the measurement of the DNA repair rate is assumed to consist in determining the instantaneous mean of all repair probabilities. The relevance of this model was examined with different endpoints: cell species, genotypes, radiation type and chromatin condensation. The Euler's Gamma function was shown to provide the distribution the most consistent with such hypotheses. Furthermore, formulas, deduced from the Gamma distribution, were found to be compatible with our previous model, empirically defined but based on a variable repair half-time.  相似文献   

6.
毛细管电泳已DNA片段分离分析的重要手段。本简述了毛细管电泳中采用无胶筛分介质分离DNA片段的机理研究,介绍了筛分介质近年的研究发展状况,依据分离介质的化学组成,分单聚物、共聚物和混聚物等3个部分进行了评述,并对其发展前景进行了展望。  相似文献   

7.
Automation is essential for rapid genetic-based mutation analysis in clinical laboratory to screen a large number of DNA samples. We propose in this report an automatic process using Beckman Coulter P/ACE™ capillary electrophoresis (CE) with laser-induced fluorescence (LIF) system to detect a single-point mutation in the codon 12 of human K-ras gene. Polymerase chain reaction (PCR) using a fluorescently labeled reverse primer and a plain forward primer to specifically amplify a selected 50 bp DNA fragment in human K-ras gene. The amplified DNA is placed on the sample tray of the CE system with a pre-programmed step for single-strand conformation polymorphism (SSCP) analysis. Sample injection and denaturation processes are performed online along with separation and real-time data analysis. The concept of automation for rapid DNA mutation analysis using CE-LIF system for SSCP is presented.  相似文献   

8.
The ability of the alkaline single-cell gel (SCG) electrophoresis technique to detect single-strand breaks and alkali-labile DNA damage in human cells induced by low doses of radiation was evaluated. Peripheral blood lymphocytes were irradiated with gamma-rays from a 137Cs source at doses from 0.01 to 1 Gy and exposed to alkali (pH greater than 13) for 20, 40 or 60 min and then electrophoresed at 25 V and 300 mA for either 20 or 40 min. The extent of DNA damage that was expressed and detected as DNA migration depended directly on the dose of radiation, the duration of exposure to alkali and the length of electrophoresis. At all experimental conditions tested, it was possible to detect a significant increase in DNA damage induced by a radiation dose as low as 0.05 Gy. Based on an analysis of the ratio of the range to the standard deviation for each radiation dose and experimental condition, the distribution of damage among cells for all doses was neither excessively homogeneous nor heterogeneous. Furthermore, the distribution was independent of radiation treatment. The SCG technique is rapid and sensitive, and useful for investigations concerned with effects of low doses of radiation.  相似文献   

9.
Supercoiled plasmid DNA is susceptible to fluid stress in large-scale manufacturing processes. A capillary device was used to generate controlled shear conditions and the effects of different stresses on plasmid DNA structure were investigated. Computational fluid dynamics (CFD) analysis was employed to characterize the flow environment in the capillary device and different analytical techniques were used to quantify the DNA breakage. It was found that the degradation of plasmid DNA occurred at the entrance of the capillary and that the shear stress within the capillary did not affect the DNA structure. The degradation rate of plasmids was well correlated with the average elongational strain rate or the pressure drop at the entrance region. The conclusion may also be drawn that laminar shear stress does not play a significant role in plasmid DNA degradation.  相似文献   

10.
Plasmid PBR322 DNA has been exposed to hydroxyl free radicals generated from an ascorbate/Fe system. Hydroxyl free radical scavengers as well as the iron chelator desferroxamine and catalase inhibit the DNA nicking which occurs, but superoxide dismutase had no effect. The DNA nicking was temperature dependent, occuring more rapidly at higher temperatures. The rate of DNA nicking was accelerated by the addition of hydrogen peroxide. There was an early lag phase in DNA nicking, even though the rate of hydroxyl free radical generation, as assessed by salicylate hydroxylation, showed no lag phase. It is considered that the early hydroxyl free radical damage to DNA may be biologically very important in mutagenic and carcinogenic processes.  相似文献   

11.
Recent developments in capillary electrophoresis (CE) in conjunction with laser-induced fluorescence (LIF) using long-wavelength (maximum excitation wavelength>500 nm) dyes are reviewed. These dyes are particularly of interest when conducting the analyses of biopolymers by CE-LIF using He-Ne lasers. These systems are benefited from low background, low costs, easy maintenance, and compactness. Derivatizations of DNA and proteins with fluorescent or nonfluorescent chemicals can be carried out prior to, during, or after separations. With the advantages of sensitivity, rapidity, and high efficiency, the applications of CE-LIF to the analysis of polymerase chain reaction products, DNA sequencing, trace analysis of proteins, and single cell analysis have been presented.  相似文献   

12.
13.
Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs–pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA.  相似文献   

14.
To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37°C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage.  相似文献   

15.
Exposure of biological materials to ionizing radiation often induces clustered DNA damage. The mutagenicity of clustered DNA damage can be analyzed with plasmids carrying a clustered DNA damage site, in which the strand bias of a replicating plasmid (i.e., the degree to which each of the two strands of the plasmid are used as the template for replication of the plasmid) can help to clarify how clustered DNA damage enhances the mutagenic potential of comprising lesions. Placement of a mismatch near a clustered DNA damage site can help to determine the strand bias, but present plasmid-based methods do not allow insertion of a mismatch at a given site in the plasmid. Here, we describe a polymerization-based method for constructing a plasmid containing clustered DNA lesions and a mismatch. The presence of a DNA lesion and a mismatch in the plasmid was verified by enzymatic treatment and by determining the relative abundance of the progeny plasmids derived from each of the two strands of the plasmid.  相似文献   

16.
DNA amplification technology has been applied to clinical diagnosis of infectious disease, genetic disorder, and cancer. After in vitro amplification of a particular DNA region, the methods of analysis for these amplified samples play a pivotal role in clinical diagnosis. Conventional gel electrophoresis has been routinely used in the lab for checking DNA. The whole procedure is time consuming and requires more than 1 ng of DNA for detection. To achieve greater performance in DNA diagnosis, we demonstrated capillary electrophoresis with laser induced fluorescence detection for analysis of amplified DNA. The analysis of DNA could be completed within 3 min and the data is directly entered into the computer. Considering the automatic and rapid process, we believe that this method could be routinely utilized for the clinical diagnosis of amplified DNA products.  相似文献   

17.
Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity.  相似文献   

18.
The filter elution technique using nondenaturing conditions is widely used to assay DNA double-strand break (DSB) induction and repair. It has been reported that in the measurement of strand breaks higher rates of elution and of initial rejoining are obtained at pH 9.6 compared to pH 7.2. In the present experiments neutral elution at pH 7.2 and 9.6 were compared in the assay of damage to DNA induced by X rays, 125I decay, and restriction enzyme digestion, in an effort to explain this discrepancy and to determine whether the higher rate of elution observed at pH 9.6 corresponds to a greater number of DSBs. X-ray damage to cellular DNA resulted in significantly different elution profiles at the two pH values. In contrast the elution profiles of the DSB induced by intragenomic 125I decays or restriction endonuclease were independent of the pH of the elution buffer. When gamma-irradiated SV40 DNA was exposed to pH 7.2 or 9.6 elution buffer prior to analysis by gel electrophoresis, a significantly greater number of DNA DSBs were detected in the DNA exposed to pH 9.6. We conclude that X and gamma radiation produce lesions (pH 9.6-labile lesions), in proportion to dose, that have the potential of becoming measurable DSBs following incubation under the mildly alkaline condition of pH 9.6. The data suggest that these lesions may result from single-hit events.  相似文献   

19.

BACKGROUND:

Pesticides are used in agriculture to protect crops, but they pose a potential risk to farmers and environment. The aim of the present study is to investigate the relation between the occupational exposure to various pesticides and the presence of DNA damage.

MATERIALS AND METHODS:

Blood samples of 210 exposed workers (after a day of intense spraying) and 50 control subjects belonging to various districts of Punjab (India) were evaluated using Comet assay. Sixty workers who showed DNA damage were selected for follow up at 5-6 months after the first sampling during a low or null spraying period.

RESULTS:

Significant differences were found in DNA damage between freshly exposed workers and controls and freshly exposed and followed up cases. There was significant increase in the comet parameters viz. mean comet tail length and frequency of cells showing migration in exposed workers as compared to controls (72.22 ± 20.76 vs. 46.92 ± 8.17, P<0.001; 31.79 vs. 5.77, P<0.001). In the second samples, followed up cases showed significant decrease in frequency of damaged cells as compared to freshly exposed workers of first sampling (P<0.05). The confounding factors such as variable duration of pesticide exposure, age, smoking, drinking and dietary habits etc which were expected to modulate the damage, were instead found to have no significant effect on DNA fragmentation.

CONCLUSION:

The evidence of a genetic hazard related to exposure resulting from the intensive use of pesticides stresses the need for educational programs for agricultural workers to reduce the use of chemicals in agriculture.  相似文献   

20.
The use of capillary electrophoresis for DNA polymorphism analysis   总被引:2,自引:0,他引:2  
Capillary electrophoresis has advanced enormously over the last 10 yr as a tool for DNA sequencing, driven by the human and other major genome projects and by the need for rapid electrophoresis-based DNA diagnostic tests. The common need of these analyses is a platform providing very high throughput, high-quality data, and low process costs. These demands have led to capillary electrophoresis machines with multiple capillaries providing highly parallel analyses, to new electrophoresis matrices, to highly sensitive spectrofluorometers, and to brighter, spectrally distinct fluorescent dyes with which to label DNA. Capillary devices have also been engineered onto microchip formats, on which both the amount of sample required for analysis and the speed of analysis are increased by an order of magnitude. This review examines the advances made in capillary and chip-based microdevices and in the different DNA-based assays developed for mutation detection and genotype analysis using capillary electrophoresis. The automation of attendant processes such as for DNA sample preparation, PCR, and analyte purification are also reviewed. Together, these technological developments provide the throughput demanded by the large genome-sequencing projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号