首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method based on high-performance liquid chromatography (HPLC) with a diode array detection system was developed and validated aiming at the simultaneous determination of oleuropein (OE) and its metabolites, hydroxytyrosol (HT) and tyrosol (T), in human plasma. These phenolic components are believed to play a vital role in the prevention of coronary artery disease and atherosclerosis. The proposed method includes a clean-up solid-phase extraction procedure (using a C(18) column) with high recovery efficiency (85-100%). The statistical evaluation of the method reveals good linearity, accuracy and reproducibility for all the compounds analyzed with RSD values less than 6.5%, while the detection limit is 50 ng/ml for both OE and T and 75 ng/ml for HT. This assay can be employed in bioavailability studies of olive oil phenolic compounds, thus assisting the evaluation of their pharmacological role.  相似文献   

2.
A high-performance liquid chromatographic method was developed for the simultaneous determination of phenylbutazone and its metabolites, oxyphenbutazone and γ-hydroxyphenylbutazone, in plasma and urine. Samples were acidified with hydrochloric acid and extracted with benzene—cyclohexane (1:1, v/v). The extract was redissolved in methanol and chromatographed on a μBondapak C15 column using a mobile phase of methanol—0.01 M sodium acetate buffer (pH 4.0) in a linear gradient (50 to 100% methanol at 5%/min; flow-rate 2.0 ml/min) in a high-performance liquid chromatograph equipped with an ultra-violet absorbance detector (254 nm). The detection limit for phenylbutazone, oxyphenbutazone and for γ-hydroxyphenylbutazone was 0.05 μg/ml.A precise and sensitive assay for the determination of phenylbutazone and its metabolites was established.  相似文献   

3.
A high-performance liquid chromatographic (HPLC) method for the simultaneous determination of cilostazol, a quinolinone derivative, and its known metabolites OPC-13015, OPC-13213, OPC-13217, OPC-13366, OPC-13269, OPC-13326 and OPC-13388 in human plasma was developed and validated. Cilostazol, its metabolites and two internal standards, OPC-3930 and OPC-13112, were extracted from human plasma by a combination of liquid–liquid and liquid–solid phase extractions, with combined organic solvents of n-butanol, methanol, chloroform, methyl-tert.-butyl ether, and a Sep-Pak silica column. The combined extract was then evaporated and the residue was reconstituted in ammonium acetate buffer (pH 6.5). The reconstituted solution was injected onto a HPLC system and was subjected to reversed-phase HPLC on a 5 μm ODS-80TM column to obtain quality chromatograph and good peak resolution. A gradient mobile phase with different percentages of acetonitrile in acetate buffer (pH 6.5) was used for the resolution of analytes. Cilostazol, its metabolites and the two internal standards were well separated at baseline from each other with resolution factor being 74 and 138. This HPLC method was demonstrated to be specific for all analytes of interest with no significant interference from the endogenous substances of human plasma. The lower limit of quantitation was 20 ng/ml for cilostazol and all metabolites. The method was validated initially for an extended linear range of 20–600 ng/ml for all metabolites and cilostazol, and has been revised later for a linear range of 20–1200 ng/ml for cilostazol and two major and active metabolites OPC-13015 and OPC-13213. The overall accuracy (relative recovery) of this method was established to be 98.5% to 104.9% for analytes with overall precision (CV) being 1.5% to 9.0%. The long-term stability of clinical plasma samples was established for at least one year at −20°C. Two internal standards of OPC-3930 and OPC-13112 were evaluated and validated. However, the data indicated that there was no significant difference for all accuracy and precision obtained by using either OPC-3930 or OPC-13112. OPC-3930 was chosen as the internal standard for the analysis of plasma samples from clinical studies due to its shorter retention time. During the validation standard curves had correlation coefficients greater than or equal to 0.998 for cilostazol and the seven metabolites. These data clearly demonstrate the reliability and reproducibility of the method.  相似文献   

4.
A reversed-phase high-performance liquid chromatographic assay was developed to simultaneously quantitate nefiracetam (NEF), a novel nootropic agent, and its three known oxidized metabolites (N-[(2,6-dimethylphenylcarbamoyl)methyl]succinamic acid (5-COOH-NEF), 4-hydroxy-NEF and 5-hydroxy-NEF) in human serum and urine. The quantitative procedure was based on solid-phase extraction with Sep-Pak C18 and ultraviolet detection at 210 nm. The calibration curves of NEF and the metabolites were linear over a wide range of concentrations (0.5–21.5 nmol/ml for NEF and 0.4–9.5 nmol/ml for metabolites in serum and 4–86 nmol/ml for NEF and 8–190 nmol/ml for metabolites in urine). Intra- and inter-day assay coefficients of variation for the compounds were less than 10%. The limit of detection was 0.1 nmol/ml for NEF, 5-COOH-NEF and 4-hydroxy-NEF, and 0.2 nmol/ml for 5-hydroxy-NEF in both serum and urine. This method is applicable for the determination of NEF and its metabolites in human serum and urine with satisfactory accuracy and precision.  相似文献   

5.
6.
7.
The determination of quinine, (3S)-3-hydroxyquinine, 2′-quininone and (10R)- and (10S)-10,11-dihydroxydihydroquinine in plasma and urine samples is described. This is the first time the R and S configurations have been correctly assigned to the two metabolites of 10,11-dihydroxyquinine. One hundred microliter-plasma samples were protein precipitated with 200 μl cold methanol. Urine samples were 10–100× diluted and then directly injected into the HPLC. A reversed-phase liquid chromatography system with fluorescence detection and a Zorbax Eclipse XDB phenyl column and gradient elution was used. The within and between assay coefficients of variation of the method for quinine and its metabolites in plasma and urine was less than 13%. The lower limit of quantitation was in the range of 0.024–0.081 μM.  相似文献   

8.
We have developed a simple and sensitive method for the simultaneous determination of phenytoin (PHT), 5(p-hydroxyphenyl)-5-phenylhydantoin (p-HPPH) and 5-(m-hydroxyphenyl)-5-phenylhydantoin (m-HPPH) in rat plasma by high-performance liquid chromatography. The three substances were separated on a reversed-phase column (5 μm TSK gel ODS-80TM, 250 mm × 4.6 mm I.D.) using acetonitrile-0.008 M NaH2PO4 (pH 6) (35:65, v/v) as a mobile phase at a flow-rate of 0.8 ml/min. Absorbance was monitored at 215 nm. The quantification limit was 50 ng/ml for each of PHT, m-HPPH and p-HPPH. The mean recoveries for DPH, m-HPPH and p-HPPH from plasma were 95.6±3.6, 94.5±4.2 and 98.6±2.9%, respectively.  相似文献   

9.
10.
A high-performance liquid chromatographic method with UV detection for the simultaneous analysis of the antiepileptic drug carbamazepine and five of its metabolites in human plasma has been developed. The analysis was carried out on a reversed-phase column (C8, 150×4.6 mm I.D., 5 μm) using acetonitrile, methanol and a pH 1.9 phosphate buffer as the mobile phase. Under these chromatographic conditions, carbamazepine and its metabolites 10,11-dihydro-10,11-epoxycarbamazepine, 10,11-dihydro-10,11-dihydroxycarbamazepine, 2-hydroxycarbamazepine, 3-hydroxycarbamazepine and 10,11-dihydro-10-hydroxycarbamazepine are baseline separated in less than 18 min. The extraction of the analytes from plasma samples was performed by means of an original solid-phase extraction procedure using Oasis HLB cartridges. The method requires only 250 μl of plasma for one complete analysis. The repeatability (RSD%<2.4), intermediate precision (RSD%<3.5) and extraction yield (84.8–103.0%) were very good for all analytes. The method is suitable for reliable therapeutic drug monitoring of patients undergoing chronic treatment with carbamazepine and for kinetic–metabolic studies of this drug.  相似文献   

11.
A simultaneous assay for moricizine, its two sulphoxidation metabolites, morizine sulphoxide and moricizine sulphone, using high-performance liquid chromatography (HPLC) is described. The drug and metabolites and clozapine (internal standard) in biological fluids were extracted using pentanesulphonic acid into diethyl ether. The ethereal extract was evaporated to dryness and the residue was redissolved in the mobile phase (methanol-water-triethylamine, 65:35:0.5, v/v). The analyses were performed on a μBondapak reversed-phase C18 column housed in a Waters Z-module, linked to a C18 pre-column, with a run-time of 12 min. The retention times were 2.7, 3.5, 6.2 and 9.7 min for moricizine sulphone, moricizine sulphoxide, moricizine and clozapine, respectively. The recovery of the compounds from plasma ranged from 89.9% for the sulphoxide to 98.1% for clozapine. The limits of detection of the assay for moricizine, moricizine sulphoxide and moricizine sulphone were 20, 10 and 5 ng/ml, respectively.  相似文献   

12.
A new reversed-phase ion-pair high-performance liquid chromatography method was developed to study the first-pass hepatic metabolism of the anti cancer drug amidox in bile. Separation of the metabolites was achieved on a Spherisorb C18 column after liquid-liquid extraction using a linear gradient system of heptanesulfonic acid in potassium phosphate monobasic (pH 4.0) with increasing amounts of methanol (0–40%). The method was further applied to a pharmacokinetic study of amidox in rats after 200 mg kg−1 intraperitoneal administration. Using 50 μl of rat bile and 300 μl of rat plasma the limit of detection for amidox was 60 ng and 85 ng, respectively, and the assay was linear from 0.1 to 150 μg ml−1. This method appears to be sensitive enough to be used in further pharmacokinetic studies of amidox in human volunteers.  相似文献   

13.
Gemcitabine (dFdC) is a pyrimidine antimetabolite with broad spectrum activity against tumors. In this paper, a normal-phase high-performance liquid chromatographic method was developed for the determination of the parent drug (dFdC) and its metabolite (dFdU) in human plasma. The described sample preparation procedure for determination of dFdC and dFdU is rapid, sensitive, reproducible and simple. The linear regression equations obtained by least square regression method, were area under the curve=0.0371 concentration (ng ml(-1))+192.53 and 1.05.10(-4) concentration (ng ml(-1))-1.2693 for dFdC and dFdU, respectively. The assay for dFdC and dFdU described in the present report has been applied to plasma samples from a bladder cancer patient.  相似文献   

14.
15.
A sensitive and selective high-performance liquid chromatographic method has been developed for a new anticonvulsant, fluzinamide, and three of its active metabolites. This method requires only 0.5 ml of plasma, and it involves a single extraction with a mixture of hexane—dichloromethane—butanol (55:40:5). The plasma extract is chromatographed on a 10-μm, C18 reversed-phase column and quantitated by ultraviolet absorbance at 220 nm. The concentration—response curve for all four compounds are linear from 0.05 μg/ml to at least 10 μg/ml. The extraction efficiency of this method is greater than 90%. The accuracy and precision of the method were tested by analyzing spiked unknown samples that had been randomly distributed across the concentration range. The mean concentrations found were within ± 9% of the various amounts added with a standard deviation of ± 3.5%. This method has been successfully applied to the analysis of samples obtained from fluzinamide-dosed dogs, healthy unmedicated volunteers, and patients who were at steady state with phenytoin, carbamazepine, and fluzinamide.  相似文献   

16.
A new, highly selective high-performance liquid-chromatographic (HPLC) assay for theophylline and its major metabolites in urine is described. The method utilizes an ion-pair extraction followed by separation and quantitation by reversed-phase ion-pair gradient-elution HPLC. Comparison with several other methods showed that interferences were present in too many blank urine samples to allow for the accurate quantitation of the metabolites of theophylline by direct injection-isocratic HPLC assays. Sample processing involving ion-pair complexing and extraction together with gradient-elution systems is recommended for accurate pharmacokinetic studies.  相似文献   

17.
A high-performance liquid chromatographic method for the simultaneous determination of misonidazole and desmethylmisonidazole in plasma is described. After plasma is deproteinized with methanol and the diluted supernatant is chromatographed on a C18 reversed-phase column, both compounds are quantitated by means of an internal standard. The coefficients of variation of within-day and day-to-day precision are below 5.0% for misonidazole in the concentration range of 25–250 mg/l and below 6.1% for desmethylmisonidazole in the concentration range of 2.5–25.0 mg/l. Calibration curves are linear and an analytical recovery varying from 97.6 to 99.8% is obtained. The detection limits for misonidazole and desmethylmisonidazole in plasma are 1.4 mg/l and 0.7 mg/l, respectively.  相似文献   

18.
High-performance liquid chromatography with a successive column-switching technique was developed for simultaneous determination of citalopram and its four metabolites in plasma. Plasma samples were injected directly, and the target compounds were purified and concentrated with an inexpensive commercial octadecyl guard column. Then, the six-port valve was switched, and the compounds retained in the column were eluted by the back-flush method using 20 mM phosphate buffer (pH 4.6)-acetonitrile (70:30, v/v) containing 0.1% diethylamine and separated with an ODS column. The compounds were assayed with a fluorescence detector at an excitation wavelength of 249 nm and an emission wavelength of 302 nm. At least 30 plasma samples could be treated with an octadecyl guard column. The limits of quantitation of this method were 2.0 ng/ml for citalopram, desmethylcitalopram, didesmethylcitalopram, citalopram propionic acid and citalopram N-oxide. This method was applied to a pharmacokinetic study in dogs and a toxicokinetic study in rats.  相似文献   

19.
Clomipramine (CMI) is a typical tricyclic antidepressant with a wide clinical spectrum, being used in major depressive, panic and obsessive-compulsive disorders. The relationship between clinical response and plasma levels of clomipramine and its N-desmethylated (N-desmethylclomipramine, DMCMI) and hydroxy-metabolites remains unclear. In particular, limited information is available on the correlation with clinical response in patients with obsessive-compulsive disorder (OCD). This study describes a new sensitive method to simultaneously determine CMI and its major N-desmethylated and hydroxy-metabolites present in human plasma by HPLC with a UV detector. After a solid-phase extraction from plasma (Isolute C2 columns) the separation of the compounds was performed on a Lichrospher CN column (250 x 4 mm, 5 microm with a 2-cm pre-column) by an eluent consisting of 10 mM K(2)HPO(4)-acetonitrile-methanol (35:25:40 v/v/v) at a flow of 1.5 ml/min. UV detector was set at 214 nm. The lower limit of quantification for all the analytes was at least 5 ng/ml. The coefficients of variation ranged between 2.0 and 4.9% with recovery rates between 97.0 and 100.3%. Linear regression analyses showed correlation coefficients between 0.98 and 0.99. This method is simple, fast and reliable with good specificity and sensitivity. Solid phase extraction is efficient and rapid, allowing the extraction of several plasma samples on the same day and may therefore be usefully and realistically applied in the clinical context. We thus investigated the relevance of plasma levels of CMI and its metabolites as a predictor of clinical outcome in a group of 15 patients with OCD.  相似文献   

20.
A new method for the determination of tryptophan and its metabolites in a single mouse brain using high-performance liquid chromatography (HPLC) with fluorometric detection is described. Tryptophan, serotonin, 5-hydroxyindoleacetic acid, indoleacetic acid, and tryptophol were clearly separated by a C8 reverse-phase column. Tissue preparation is performed only to centrifuge homogenates of brain prior to the injection to HPLC. The sensitivity is in the range from 10 to 15 pg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号