首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paclitaxel is an anticancer agent extracted from the bark of the yew tree and is widely used in chemotherapy for solid tumors, including non-small cell lung cancer and ovarian carcinoma. Most assays to measure paclitaxel in plasma require a large amount of sample (0.4-1 ml) to achieve the necessary sensitivity, and are not suitable when only small sample sizes are available. To circumvent this latter limitation, we developed a sensitive liquid chromatography-mass spectrometry (LC-MS) method for the determination of paclitaxel in plasma based on the use of small sample volumes (50 microl plasma). A solid phase extraction procedure was employed that enabled the eluent to be directly injected onto a reversed phase chromatographic HPLC system using positive electrospray ionization followed by mass spectrometric detection. The extraction recoveries of paclitaxel were 98 and 83% from plasma and brain tissues, respectively. The mobile phase consisted of 50% acetonitrile in 0.1% formic acid that was pumped at 0.2 ml/min to yield a retention time for paclitaxel of 6.2 and 5.4 min for cephalomannine, the internal standard. The method has been validated at paclitaxel plasma concentrations from 0.036 to 9.9 microg/ml, and from 0.054 to 1.96 microg/ml in brain homogenates. A sensitive and specific assay for paclitaxel has been developed that has the advantages of using small sample sizes, and a single extraction step without solvent evaporation.  相似文献   

2.
Plasma phenobarbital (PB) concentrations in rat offspring were determined using a 9 μl capillary by high-performance liquid chromatography (HPLC). Capillary plasma which was put into a Bond Elut® cartridge column by using 1 ml of 0.01 M KH2PO4 was applied to the column with 50 μl of 2 μg/ml of acetanilide (internal standard, I.S.). After washing the column, PB and I.S. were eluted with methanol and injected into the HPLC system. There were excellent linear correlation between the amount of PB and length of the capillary at three different concentrations. Calibration for PB was linear in the range of 0–50 μg/ml. The coefficients of variation were 3.4–5.0% and 5.9–7.5% in the within-day and between-day assays, respectively. The extraction recovery rates were 87.5–105.4%. By this method, it was possible to measure plasma PB concentrations in rat offspring without killing. These results suggested that this method is very useful to determine the plasma PB concentration derived from mother’s milk in newborn rats.  相似文献   

3.
A sensitive high-performance liquid chromatography (HPLC) method using UV detection for the determination of gabapentin in human plasma has been developed. In this method, gabapentin was extracted from human plasma with a reversed-phase solid-phase extraction (SPE) cartridge followed by derivatization with phenylisothiocyanate. Analysis was achieved by using a HPLC system that was equipped with a UV detector. The quantitation limit of gabapentin in human plasma was 0.03 microg/ml. The method is sensitive with excellent selectivity and reproducibility and it has been applied to a bioequivalence clinical study with great success.  相似文献   

4.
A sensitive and specific assay of imidapril and its active metabolite, imidaprilat, in human plasma has been developed. This method is based on rapid isolation and high-performance liquid chromatography (HPLC)–electrospray ionization (ESI)-tandem mass spectrometry (MS–MS). Imidapril and imidaprilat were isolated from human plasma using OASIS HLB (solid-phase extraction cartridge), after deproteinization. The eluent from the cartridge was evaporated to dryness, and the residue was reconstituted in mobile phase and injected into the HPLC–ESI-MS–MS system. Each compound was separated on a semi-micro ODS column in acetonitrile–0.05% (v/v) formic acid (1:3, v/v). The selected ion monitoring using precursor→product ion combinations of m/z 406→234 and 378→206, was used for determination of imidapril and imidaprilat, respectively. The linearity was confirmed in the concentration range of 0.2 to 50 ng/ml in human plasma, and the precision of this assay, expressed as a relative standard deviation, was less than 13.2% over the entire concentration range with adequate assay accuracy. The HPLC–ESI-MS–MS method correlates well with the radioimmunoassay method, therefore, it is useful for the determination of imidapril and imidaprilat with sufficient sensitivity and specificity in clinical studies.  相似文献   

5.
A rapid, specific, sensitive and economical method has been developed and validated for the determination of grepafloxacin in human plasma and urine. The assay consisted of reversed-phase HPLC with UV detection. Plasma proteins were removed by a fast and efficient procedure that has eliminated the need for costly extraction and evaporation. For the urine samples, the only required sample preparation was dilution. Separation was achieved on a reversed-phase TSK gel column with an isocratic mobile system. The method had a quantification limit of 0.05 μg/ml in plasma and 0.5 μg/ml in urine. The coefficients of variation (C.V.) were less than 4% for within- and between-day analyses. The method was successfully applied to a pharmacokinetic study, and was proved to be simple, fast and reproducible.  相似文献   

6.
A high-performance liquid chromatographic method for the analysis of doxycycline in turkey plasma samples using demeclocycline hydrochloride as the internal standard was developed, optimized and validated, A one-step extraction procedure and an isocratic HPLC method with UV detection were used. No interferences with endogenous compounds or with the anticoagulant were observed, Linear calibration curves (r2>0.99) were obtained in water and plasma between 0 and 600 μg ml−1. Good recoveries for doxycycline (>66%) and demeclocycline (>72%) were seen both in water and in plasma, The coefficient of variation was <9.86% for within-day reproducibility and <7.53% for the between-day reproducibility. The deviation between the mean value found and the true value was <14.5% (accuracy). The limit of detection was 0.1 μg ml−1 in plasma samples. A good stability of doxycycline was observed in water and in plasma samples after storage for six months at −20°C (recovery >91%).  相似文献   

7.
A method for determination of a gamma-secretase inhibitor, cis-3-[4-[(4-chlorophenyl)sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]propanoic acid (A), in human plasma and cerebrospinal fluid (CSF) has been developed to support the clinical investigation of compound A for its potential treatment of Alzheimer's disease. The method is based on HPLC with atmospheric pressure chemical ionization tandem mass spectrometric detection (APCI-MS/MS) in the negative ionization mode using a heated nebulizer interface. The addition of phosphoric acid at the ratio of 10-30microL per milliliter of human plasma or CSF was required during clinical sample collection to stabilize an acylglucuronide metabolite (C), which was potentially present in human plasma and CSF. Tween 20 (10% solution) was added at the ratio of 20microL per milliliter of CSF during CSF sample collection to prevent the loss of compound A during the storage of clinical samples. The compound A and its analog internal standard (B) in treated plasma or CSF were isolated from human plasma or CSF using solid phase extraction (SPE) in the 96 well format. The isolated analyte and internal standard were chromatographed on a Phenomenex Synergi Polar RP analytical column (50mmx3.0mm, 4microm), using a mobile phase consisting of 60/40 (v/v, %) acetonitrile/water at a flow-rate of 0.5mL/min. Tandem mass spectrometric detection was performed using a Sciex API 3000 tandem mass spectrometer operated in the multiple reaction monitoring (MRM) mode using precursor to product ion transitions of 441-->175 for A and 469-->175 for B, respectively. The assays were validated over the concentration range of 0.5-200ng/mL for human plasma and CSF. Replicate analyses (n=5) of spiked standards for both assays yielded a linear response with coefficients of variation less than 7% and accuracy within 5% of the nominal concentrations. In addition, the assays were automated to improve sample throughput by utilizing a Packard Multi PROBEII automated liquid handling system and a Tom-Tec Quadra 96 system. Numerous clinical studies have been supported using these assays.  相似文献   

8.
Sensitive high-performance liquid chromatographic assays have been developed for the quantification of stavudine (2′,3′-didehydro-3′-deoxythymidine, d4T) in human plasma and urine. The methods are linear over the concentration ranges 0.025–25 and 2–150 μg/ml in plasma and urine, respectively. An aliquot of 200 μl of plasma was extracted with solid-phase extraction using Oasis® cartridges, while urine samples were simply diluted 1/100 with HPLC water. The analytical column, mobile phase, instrumentation and chromatographic conditions are the same for both methods. The methods have been validated separately, and stability tests under various conditions have been performed. The detection limit is 12 ng/ml in plasma for a sample size of 200 μl. The bioanalytical assay has been used in a pharmacokinetic study of pregnant women and their newborns.  相似文献   

9.
An isocratic HPLC method for the simple and selective determination of adenine nucleoside and nucleotides has been developed. The separation is achieved at room temperature by reversed-phase chromatography (Shiseido, Capcell Pak C18). A mixture of 0.1 M triethylamine (TEA) phosphate buffer and methanol (95:5, v/v) is used as a standard eluent. Influence of pH and concentrations of organic modifiers and TEA ion on capacity factors of adenine compounds has been investigated. It has been also found that the TEA ion in the eluent is adsorbed onto the reversed-phase surface. The results clearly demonstrate that ion-pair formation with TEA ion occurs probably both in the mobile phase and on the stationary phase and governs the retention of adenine and nucleotides in the present system. The HPLC system is applied to the analysis of adenine nucleotides formed as intermediates in the synthesis of 3′-phosphoadenosine 5′-phosphosulphate (PAPS) and to the assays of ATPases and 5′-nucleotidase activities in rat liver plasma membrane. This method is a new type of ion-pair reversed-phase HPLC system and is suitable for the separation of highly polar organic anions, especially for adenine nucleotides.  相似文献   

10.
A normal phase HPLC system has been developed which is applicable to all of the steroid separations involved in the assay of steroid 17 alpha-hydroxylase (EC 1.14.99.9) and C17-20 lyase activities, in both the delta 4 (progesterone) and delta 5 (pregnenolone) pathways. A hexane-tetrahydrofuran (THF) gradient system is used with silica stationary phase and a flow cell radioactivity detector having a high efficiency for tritium. Folch extraction produces uniform extraction of substrates and products from the microsomal incubates, and this uniformity is maintained through HPLC separation and measurement. The hexane-THF mobile phase is convenient for product isolation and substrate purification and should be adaptable to other steroid separations. The system is especially useful for steroid enzyme assays utilizing radiolabeled substrates, since internal standards are not required for measuring recoveries of substrates and products.  相似文献   

11.
An HPLC system using solid-phase extraction and HPLC with UV detection has been validated in order to determine tramadol and o-desmethyltramadol (M1) concentrations in human plasma. The method developed was selective and linear for concentrations ranging from 50 to 3500 ng/ml (tramadol) and 50 to 500 ng/ml (M1) with mean recoveries of 94.36±12.53% and 93.52±7.88%, respectively. Limit of quantitation (LOQ) was 50 ng/ml. For tramadol, the intra-day accuracy ranged from 95.48 to 114.64% and the inter-day accuracy, 97.21 to 103.24%. Good precision (0.51 and 18.32% for intra- and inter-day, respectively) was obtained at LOQ. The system has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.  相似文献   

12.
A rapid and sensitive method for the extraction and quantification of penicillin-G and procaine in horse urine and plasma samples has been successfully developed. The method involves the use of solid-phase extraction (SPE) for penicillin-G, liquid–liquid extraction (LLE) for procaine, and high-performance liquid chromatography (HPLC) for the quantification of penicillin-G and procaine. The new method described here has been successfully applied in the pharmacokinetic studies of procaine, penicillin-G and procaine–penicillin-G administrations in the horse.  相似文献   

13.
Previously [Anal. Biochem., 232 (1995) 163–171], we reported a high-performance liquid chromatography (HPLC) assay method for human plasma lipoproteins using a diethylaminoethyl (DEAE)-glucomannan column, which is not commercially available. In this study, HPLC assay methods for lipoproteins in plasma samples of human and experimental animals, and modified low-density lipoproteins (LDLs) of rabbits have been developed using a commercially available anion-exchange ProtEx-DEAE column. For the assays of plasma lipoproteins, the method includes complete separation of high-density lipoproteins, LDLs and very low-density lipoproteins within 20 min using stepwise elution, and determination by post-column reaction with an enzymatic cholesterol reagent as the total cholesterol (TC) level. Similarly, mild oxidative and artificially oxidised LDLs were separated into their subfractions using stepwise elution, and determined based on the TC level. The methods using the DEAE-glucomannan and ProtEx-DEAE columns were cross-validated. There was an excellent correlation between the two methods. The obtained results reveal that the anion-exchange HPLC method using the ProtEx-DEAE column could be useful for the assays of plasma lipoproteins and modified LDLs.  相似文献   

14.
An HPLC system using a simple liquid-liquid extraction and HPLC with UV detection has been validated to determine tramadol concentration in human plasma. The method developed was selective and linear for concentrations ranging from 10 to 2000 ng/ml with average recovery of 98.63%. The limit of quantitation (LOQ) was 10 ng/ml and the percentage recovery of the internal standard phenacetin was 76.51%. The intra-day accuracy ranged from 87.55 to 105.99% and the inter-day accuracy, 93.44 to 98.43% for tramadol. Good precision (5.32 and 6.67% for intra- and inter-day, respectively) was obtained at LOQ. The method has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.  相似文献   

15.
A gradient high-performance liquid chromatographic (HPLC) method is described for the quantification of KW-2149 and its two major metabolites in plasma. The method involves a sample clean-up by solid-phase extraction on C18 columns, separation of the respective compounds by HPLC on a YMC ODS-AQ column (5-μm particle size, 150×6 mm I.D.), using a methanol–water gradient system as an eluent, and measurement by UV absorbance detection at 375 nm. The limits of quantitation were 10 ng/ml for KW-2149 and M-16, and 15 ng/ml for M-18. Recoveries from plasma were higher than 92% on C18 extraction columns. Intra-day precision, expressed as %C.V., was between 1.4 and 6.5%. Intra-day accuracy ranged from 94 to 107%. Precision and accuracy of variability of inter-assays increased somewhat; however, were still within acceptable ranges. The ability of the method to quantify KW-2149 and two major metabolites simultaneously, with precision, accuracy and sensitivity, make it useful in monitoring the fate of this new mitomycin in cancer patients.  相似文献   

16.
Simultaneous determination of mycophenolic acid (MPA) and mycophenolate phenol glucuronide (MPAG) in plasma and urine was accomplished by isocratic HPLC with UV detection. Plasma was simply deproteinated with acetonitrile and concentrated, whereas urine was diluted prior to analysis. Linearity was observed from 0.2 to 50 μg/ml for both MPA and MPAG in plasma and from 1 to 50 μg/ml of MPA and 5 to 2000 μg/ml MPAG in urine with extraction recovery from plasma greater than 70%. Detection limits using 0.25 ml plasma were 0.080 and 0.20 μg/ml for MPA and MPAG, respectively. The method is more rapid and simple than previous assays for MPA and MPAG in biological fluids from patients.  相似文献   

17.
A novel high-performance liquid chromatography (HPLC) sample clean-up procedure for use in mass fragmentographic assays of (sub)-nanogram amounts of drugs in human plasma is described and compared with a conventional extraction sequence for sample purification. With the assay of the new antidepressant drug mianserin hydrochloride (Org GB 94) as an example, the HPLC procedure is discussed with respect to retention time, recovery, purification, column deterioration and convenience. It is demonstrated that HPLC sample clean-up is a useful and time-saving procedure for routine clinical analyses.  相似文献   

18.
Validation of two HPLC assays for the quantitation of carboplatin in human plasma ultrafiltrate is described. Both assay methods employed a YMC ODS-AQ 3.9×150 mm (3 μm) column for the chromatographic separation. The first method utilized direct UV detection, the second method utilized UV detection following post-column derivatization with sodium bisulfite. Structural analogues of carboplatin were synthesized and used as internal standards for the assays. With direct UV detection, sample clean-up using solid-phase extraction on amino cartridges was required prior to injection, with extraction recoveries ranging from 80 to 90%. This extraction procedure was not necessary with the post-column reaction method, which employed a more selective analytical wavelength. Unfortunately, instability of the post-column reagent was a problem and led to greater variability in predicted concentration values. For standard curves, a weighted (1/y2) regression approach was used for plots of peak area or peak height ratio (carboplatin/internal standard) vs. carboplatin concentration. The limit of detection of both assays was 0.025 μg/ml and both were validated for carboplatin concentrations from 0.05 to 40 μg/ml. Accuracy and precision data were generated using three batches of validation samples, each batch consisting of a standard curve and five sets of quality control samples. Stability of carboplatin in blood, plasma, plasma ultrafiltrate, and reconstituted extracts was evaluated. The assay methods were employed for the pharmacokinetic analysis of blood samples drawn from a pediatric patient that received a 400 mg/m2 dose of carboplatin.  相似文献   

19.
Sensitive assays for the determination of cyclobenzaprine (I) in human plasma and urine were developed utilizing high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS-MS) and ultraviolet (UV) absorbance detections. These two analytical techniques were evaluated for reliability and sensitivity, and applied to support pharmacokinetic studies. Both methods employed a liquid-liquid extraction of the compound from basified biological sample. The organic extract was evaporated to dryness ,the residue was reconstituted in the mobile phase and injected onto the HPLC system. The HPLC assay with MS-MS detection was performed on a PE Sciex API III tandem mass spectrometer using the heated nebulizer interface. Multiple reaction monitoring using the parent → daughter ion combinations of m/z 276 → 215 and 296 → 208 was used to quantitate I and internal standard (II), respectively. The HPLC-MS-MS and HPLC-UV assays were validated in human plasma in the concentration range 0.1–50 ng/ml and 0.5–50 ng/ml, respectively. In urine, both methods were validatedin the concentration range 10–1000 ng/ml. The precision of the assays, as expressed as coefficients of variation (C.V.) was less than 10% over the entire concentration range, with adequate assay specificity and accuracy. In addition to better sensitivity, the HPLC-MS-MS assay was more efficient and allowed analysis of more biological fluid samples in a single working day than the HPLC-UV method.  相似文献   

20.
A column-switching, reversed-phase high-performance liquid chromatographic (HPLC) method for the determination of a new carbapenem antibiotic assay using ultraviolet detection has been developed for a new carbapenem antibiotic L-749,345 in human plasma and urine. A plasma sample is centrifuged and then injected onto an extraction column using 25 mM phosphate buffer, pH 6.5. After 3 min, using a column-switching valve, the analyte is back-flushed with 10.5% methanol–phosphate buffer for 3 min onto a Hypersil 5 μm C18 BDS 100×4.6 mm analytical column and then detected by absorbance at 300 nm. The sample preparation and HPLC conditions for the urine assay are similar, except for a longer analytical column 150×4.6 mm. The plasma assay is specific and linear from 0.125 to 50 μg/ml; the urine assay is linear from 1.25 to 100 μg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号