首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of rhodanese was histochemically tested in cryostat sections of the frog (Rana temporaria) and mouse liver. The activity levels were evaluated in sections, and the results were expressed as the ratio of the area of all granules, products of the enzymatic test, to the total analyzed area (area fraction). The present study confirmed the biochemically detected activity of rhodanese, and showed a large pool of endogenous sulfane sulfur donors, substrates for rhodanese, in the frog liver. The area of a single granule corresponded to the size of the mitochondrium, what suggests enzyme localization in this organelle. In view of this it should be considered whether the rhodanese activity, biochemically detected in the cytosolic fraction of the frog liver, results from the enzyme action. The total content of sulfur in cryostat sections of the mouse and frog liver was calculated and compared on the basis of the Energy Dispersion Spectrum (EDS) obtained by a scanning microscope. These studies showed higher total sulfur content in the frog liver than in the mouse liver. The high total content of sulfur in the frog liver in autumn might be associated with sulfur storing for protein biosynthesis during the period of hibernation.  相似文献   

2.
1. The investigators studied annual changes in rhodanese activity in mitochondria and cytosol of frog liver cells (Rana temporaria) and found that the value of the enzyme-specific activity was higher in mitochondria than in cytosol, showing significant seasonal fluctuations. 2. The character of changes in the rhodanese activity in mitochondria, regardless of the sex of the studied animal, was demonstrated to be dependent upon the seasonal changes in frog thyroid gland function. 3. In the supernatant fraction of R. temporaria liver homogenate, seasonal changes of rhodanese specific activity seemed to be related to changes in hepatic function.  相似文献   

3.
Summary The biosynthesis of rhodanese was studied in human hepatoma cell lines by immunoblotting and pulselabeling experiments using polyclonal antibodies raised against the bovine liver enzyme. Rhodanese, partially purified from human liver, showed an apparent molecular weight of 33,000 daltons, coincident with that of rhodanese from Hep 3B cells. After pulse labeling of Hep 3B cells both at 37°C and 25°C, rhodanese in the cytosol fraction exhibited the same molecular weight as the enzyme isolated from the particulate fraction containing mitochondria. Moreover, newly synthesized rhodanese from total Hep 3B RNA translation products showed the same electrophoretic mobility as rhodanese from Hep 3B cells. These results suggest that rhodanese, unlike most mitochondrial proteins, is not synthesized as a higher molecular weight precursor.  相似文献   

4.
Evidence from molecular weight studies and sequence analysis of bovine liver rhodanese indicates that the enzyme is a single polypeptide of molecular weight 35,200, and not a dimer of identical subunits half this size. The rhodanese molecule contains 317 amino acids including 5 methionines, 4 cysteines, and 5 tryptophans. As expected, six fragments were produced by cleavage with cyanogen bromide and these have been aligned in the enzyme with the aid of overlapping tryptic peptides isolated from a [14C] carboxymethylmethionyl rhodanese derivative. The cyanogen bromide fragments account for all of the amino acid residues of the parent rhodanese molecule. Methionine residues are located at positions 72, 112, 214, 217, and 235 in the polypeptide chain and the active site cysteine is at position 251, in the carboxyl-terminal segment of the molecule.  相似文献   

5.
Summary The role of rhodanese in the detoxication of acute cyanide exposure is controversial. The debate involves questions of the availability of rhodanese to cyanide in the peripheral circulation. Blood-borne cyanide will distribute to the brain and may induce lesions or even death. The present study addresses the dispute by determining the distribution of rhodanese in tissues considered to have the highest rhodanese activity and thought to serve as major detoxication sites. The results indicate that rhodanese levels are highest in (1) hepatocytes that are in close proximity to the blood supply of the liver (2) epithelial cells surrounding the bronchioles (a major entry route for gaseous cyanide) and (3) proximal tubule cells of the kidney (serving to facilitate cyanide detoxication and elimination as thiocyanate). Rhodanese activity in the brain is low compared with liver and kidney (Mimoriet al., 1984; Drawbaugh & Marrs, 1987); the brain is not considered to be a major site of cyanide detoxication. The brain, however, is the target for cyanide toxicity. In this study our goal was also to differentiate the distribution of rhodanese in an area of the brain. We found that the enzyme level is highest in fibrous astrocytes of the white matter. Cyanide-induced brain lesions may thus occur in areas of the brain lacking sufficient sites for detoxication.  相似文献   

6.
In previous studies on the rhodanese activity of bovine liver mitochondria, we have shown that in addition to activity observed in the soluble protein fraction, there is rhodanese activity that is bound to the mitochondrial membrane. The latter activity accounts for as much as 40% of the total and, in situ, is associated in a multiprotein complex that forms iron-sulfur centers. In the present studies, we have investigated the rhodanese activity of bovine heart muscle. We have found that the major part of this enzyme activity is localized in the mitochondria and, further, that at least 25% of the total rhodanese activity of heart mitochondria is membrane-bound. As in liver tissue, the heart activity at least in part is associated in a multiprotein complex that forms iron-sulfur centers. Upon purification of the heart rhodanese in the soluble protein fraction, there is a 10- to 30-fold decrease inK m values for the standard assay substrates thiosulfate and cyanide ions. These observations are consistent with the interpretation that there are activated and deactivated (low activity) forms of the heart enzyme in crude extracts, but only the activated form survives purification. The present results, together with our recent finding that liver mitochondrial rhodanese is subject to phosphorylation, lend support to our proposal that the rhodaneses serve as converter enzymes which regulate the rate of electron transport through sulfuration of respiratory chain components. The rhodaneses, in turn, are controlled by protein kinases and the local ATP concentration.  相似文献   

7.
There is performed a comparative analysis of action of four acridine derivatives and of one xanthene derivative (pyronin G) on activity of liver monoamine oxidase (MAO) of two species of poikilothermal freshwater animals: a representative of amphibians—the common frog Rana temporaria and a representative of the Salmonidae order—the European whitefish Coregonus lavaretus. The studied synthetic hexamember tricyclic compounds show the irreversible character of inhibition of intermediate potency towards the enzyme from the both biological sources. There are obtained qualitative and quantitative differences in the reaction ability and selectivity of action of the studied inhibitors for liver MAO of frog and whitefish. The obtained data of the inhibitory analysis with use of specific substrates are an indirect proof for the existence in liver of the studies frog species of two molecular forms, whereas in the whitefish liver—the single molecular MAO form.  相似文献   

8.
Data are presented on molecular mechanisms of uncoupling of oxidative phosphorylation by fatty acids (laurate) in liver mitochondria of one of the poikilothermal animals, the frog Rana temporaria. It has been shown that the uncoupling action of laurate in frog liver mitochondria, like in those of mammals, occurs with participation of protein carriers of anions of the inner mitochondrial membrane, ADP/ATP- and aspartate/glutamate antiporters. At the same time, in frog liver mitochondria the uncoupling activity of laurate is lower than in liver mitochondria of mammals (white mice). Seasonal differences in the laurate uncoupling activity in frog liver mitochondria are revealed: it is much lower in April, than in January, the season of metabolic depression. This difference is due to that in January the degree of participation of the aspartate/glutamate antiporter in the uncoupling is considerably decreased.  相似文献   

9.
Rat liver rhodanese [EC 2.8.1.1] purified by ammonium sulfate fractionation, CM-cellulose and Sephadex G-200 chromatography yielded two active fractions (I & II). Their molecular weights were estimated to be 1.75 X 10(4) (I) and 1.26 X 10(4) (II) by the gel filtration method. Kinetic studies revealed that Fraction I rat liver rhodanese catalyzes thiocyanate formation from thiosulfate and cyanide by a double displacement mechanism. Carboxylic acids such as DL-isocitric, citric malic, pyruvic, and oxaloacetic acid were competitive inhibitors with respect to thiosulfate, whereas fumaric, succinic, and alpha-ketoglutaric acids were noncompetitive inhibitors with respect ot thiosulfate. Incubation of mitochondria with sulfate and alpha-ketoglutaric acid caused a significant decrease in rhodanese activity.  相似文献   

10.
L-cysteine desulfuration was examined in tissues of Rana temporaria, in October and January. The activities of 3-mercaptopyruvate sulfurtransferase (MPST), cystathionine gamma-lyase (CST) and rhodanese were primarily concentrated in frog liver and kidney. The values of CST and rhodanese activity, as well as sulfane sulfur compounds levels fell in the range characteristic of rat. For each of the investigated tissues changes noted in the enzymatic activities and in the level of glutathione (GSH), protein-bound cysteine (PbCys) and sulfane sulfur compounds were dependent on the month in which the determination was performed, and on the character of the tissue. In such tissues as the liver or gonads, high GSH levels and high activities of MPST (in the liver) or MPST and rhodanese (in the gonads) seemed to accompany protein biosynthesis during hibernation. PbCys, the level of which was consequently diminished in all tissues in January, compensated the absence of exogenous cysteine. A significantly reduced GSH level in the brain in January seemed to be correlated with decreased requirements of the tissue for this important natural antioxidant at diminished thyroid hormones levels in the serum and minimal oxygen consumption during the hibernation. In the kidney, the possible participation of sulfane sulfur compounds in detoxification processes requires elucidation, similarly as in protection against cellular oxidative stress at extremely low levels of GSH.  相似文献   

11.
The enzyme rhodanese (EC 2.8.1.1) appears as a single polypeptide chain protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of this species is approx. 33 000. This contrasts with previous reports that rhodanese behaves on gel filtration chromatography as a rapidly equilibrating monomer-dimer system composed of identical subunits with a molecular weight of 18 500. We have investigated this apparent discrepancy by isolating the enzyme by the two different preparative procedures used in the above investigations. The two crystalline samples were subjected to gel filtration chromatography under a wide variety of conditions and to sodium dodecyl sulfate disc gel electrophoresis. The two preparations yielded rhodanese which behaved identically and no evidence for the monomeric species was obtained under any experimental condition tested. Thin-layer gel chromatography of clarified liver homogenates gave no evidence of rhodanese species other than that present in the purified samples. The variation in molecular weights observed in gel filtration chromatography may be a reflection of the conformational mobility of the enzyme leading to solvent-dependent changes in Stokes radius. If rhodanese is dimeric, special interactions must stabilize it under the conditions tested here.  相似文献   

12.
1. The activity of rhodanese in different tissues of some domestic animals was measured. 2. Rhodanese was present in all tissues studied. 3. The activity of rhodanese in most tissues of sheep was higher than other animals studied. 4. In sheep and cattle the epithelium of rumen, omasum and reticulum were the richest sources of rhodanese. Significant activity of rhodanese was also present in liver and kidney. 5. In camel the liver contained the highest level of rhodanese followed by lung and rumen epithelium. Camel liver contained a third of the activity of sheep liver. 6. Equine liver had a third of the activity of sheep liver. Other tissues showed low levels of rhodanese activity. 7. Dog liver contained only 4% of the activity of sheep liver. In this animal, brain was the richest source of rhodanese. 8. The results are discussed in terms of efficacy of different tissues of animals in cyanide detoxification.  相似文献   

13.
Rhodanese (EC 2.8.1.1.) from bovine liver contains four reduced cysteine groups. The –SH group of cysteine 247, located in a rhodanese active centre, transfers sulfane sulfur in a form of hydrosulfide (–S–SH) from appropriate donors to nucleophilic acceptors. We aimed to discover whether S-nitrosylation of critical cysteine groups in rhodanese can inhibit activity of the enzyme by covalent modification of –SH groups.

The inhibition of rhodanese activity was studied with the use of a number of nitric oxide (NO) donors. We have successfully confirmed using several methods that the inhibition of rhodanese activity is a result of the formation of stable S-nitrosorhodanese.

Low molecular weight NO donors, such as S-nitroso-N-acetylpenicillamine (SNAP) and S-nitrosoglutathione (GSNO), inactivate rhodanese and are much more effective in this regard (100% inhibition at 2.5 mM) than such known inhibitors of this enzyme, as N-ethylmaleimide (NEM) (25 mM < 50%) or sulfates(IV) (90% inhibition at 5 mM). On the other hand, sodium nitroprusside (SNP) and nitrites inhibit rhodanese activity only in the presence of thiols, which suggests that S-nitrosothiols (RSNO) also have to participate in this reaction in this case.

A demonstration that rhodanese activity can be inhibited as a result of S-nitrosylation suggests the possible mechanism by which nitric oxide may regulate sulfane sulfur transport to different acceptors.  相似文献   


14.
Mitochondrial rhodanese: membrane-bound and complexed activity   总被引:3,自引:0,他引:3  
We have proposed that phosphorylated and dephosphorylated forms of the mitochondrial sulfurtransferase, rhodanese, function as converter enzymes that interact with membrane-bound iron-sulfur centers of the electron transport chain to modulate the rate of mitochondrial respiration (Ogata, K., Dai, X., and Volini, M. (1989) J. Biol. Chem. 204, 2718-2725). In the present studies, we have explored some structural aspects of the mitochondrial rhodanese system. By sequential extraction of lysed mitochondria with phosphate buffer and phosphate buffer containing 20 mM cholate, we have shown that 30% of the rhodanese activity of bovine liver is membrane-bound. Resolution of cholate extracts on Sephadex G-100 indicates that part of the bound rhodanese is complexed with other mitochondrial proteins. Tests with the complex show that it forms iron-sulfur centers when incubated with the rhodanese sulfur-donor substrate thiosulfate, iron ions, and a reducing agent. Experiments on the rhodanese activity of rat liver mitochondria give similar results. Taken together, the findings indicate that liver rhodanese is in part bound to the mitochondrial membrane as a component of a multiprotein complex that forms iron-sulfur centers. The findings are consistent with the role we propose for rhodanese in the modulation of mitochondrial respiratory activity.  相似文献   

15.
Comparative enzymological study of catalytical properties of monoamine oxidase (MAO) of liver of the marsh frog Rana ridibunda and common frog Rana temporaria has revealed certain features of similarity and differences between these enzymes. The MAOs from both studied biological sources show catalytic properties resembling those of the classical MAO of terrestrial vertebrates: they deaminate tyramine, tryptamine, serotonin, and benzylamine and do not deaminate histamine, have sensitivity to clorgyline, the specific inhibitor of the MAO A form, and deprenyl, the specific inhibitor of the MAO B form, and are not inhibited by 10−2 M semicarbazide. Based on data of substrate-inhibitor analysis, a suggestion is put forward about the existence of two molecular forms of the enzyme in liver of the studied frog species. Quantitative interspecies differences have been revealed between liver MAO of Rana ridibunda and Rana temporaria in values of kinetic parameters of reactions of deamination of several substrates and in sensitivity to the inhibitors, deprenyl and clorgyline. In the species Rana temporaria the MAO activity in reaction of deamination of serotonin and benzylamine were virtually identical, whereas in the species Rana ridibunda these parameters for serotonin were almost one order higher than for benzylamine. In the species Rana ridibunda, selectivity of action of deprenyl was expressed many times weaker, while selectivity of the clorgyline—one order of magnitude stronger than in the species Rana temporaria. The catalytic activities towards all studied substrates of liver MAO of both studied amphibian species were several times lower as compared with the enzyme of rat liver.  相似文献   

16.
A fungal rhodanese from the spray-dried powder of a culture filtrate of Trametes sanguinea was purified to 142-fold by ammonium sulfate precipitation and DEAE-cellulose and Sephadex G–100 column chromatography. The purified rhodanese (pI 5.10) showed a single band on disc electrophoresis, and its molecular weight was estimated to be 51,700 by gel filtration technique. The enzyme had a broad pH optimum between 7.5 and 8.5 and was stable at pH values from 4 to 8 at 30°C for 44 hr. Its activity was inhibited by p-chloromercuribenzoate at pH 9.5, but not at pH 8.0, and was inhibited by cysteine, β-mercaptoethanol and sodium borohydride at pH 8.0. Both thiosulfate and cyanide showed substrate inhibition at high concentrations. Dihydrolipoate and benzenethiosulfonate were also good substrates.  相似文献   

17.
Summary Changes of the specific activity of 3-mercaptopyruvate sulfurtransferase (MPST), rhodanese and cystathionase in Ehrlich ascites tumor cells (EATC) and tumor-bearing mouse liver after intraperitoneal administration of thiazolidine derivatives, L-cysteine, D,L-methionine, thiocystine or thiosulfate were estimated. Thiazolidine derivatives used were: thiazolidine-4-carboxylic acid (CF), 2-methyl-thiazolidine-2,4-dicarboxylic acid (CP) and 2-methyl-thiazolidine-4-carboxylic acid (CA). In the liver, the activity of MPST was significantly increased by all the studied compounds, whereas the activity of rhodanese was by CF and thiocystine and that of cystathionase was by the administration of cysteine and CP. Un the other hand, cysteine lowered the rhodanese activity and the activity of cystathionase was decreased by the administration of methionine and thiocystine. Activities of MPST and rhodanese were even lower in EATC than those in the liver of tumor-bearing mouse and the activity of cystathionase in EATC was not be detected. The thiazolidine derivatives significantly increased the level of MPST activity in EATC, but decreased the rhodanese activity. Thiosulfate also increased the activity of MPST to a lesser degree, but cysteine, methionine and thiocystine gave little change in the activity. The rhodanese activity in EATC was slightly increased only by thiocystine. These findings suggest that the sulfur metabolism in the tumor-bearing mouse liver is different from that in the normal mouse liver, and that sulfur compounds are minimally metabolized to sulfane sulfur, a labile sulfur, in EATC.  相似文献   

18.
Bovine liver thiosulfate sulfurtransferase (rhodanese) (EC 2.8.1.1) HAS BEEN REPORTED TO EXIST IN SOLUTION IN A RAPID, PH-dependent equilibrium between monomeric and dimeric forms of molecular weights 18 500 and 37 000 (Volini, M., DeToma, F. and Westley, J. (1967), J. Biol. Chem. 242, 5220). We have reinvestigated the proposed dissociation using sodium dodecylsulfate-polyacrylamide gel electrophoresis. The smallest rhodanese species observed has a molecular weight around 35 000, which is not reduced by severe denaturing conditions, including alkylation in 8 M guanidine-HCl or dialysis against 2% sodium dodecylsulfate and 5% mercaptoethanol. After limited CNBr cleavage, intermediate products of greater than 18 500 molecular weight are formed. The apparent molecular weight of these intermediate fragments is not changed by addition of mercaptoethanol. The total apparent molecular weights of the CNBr fragments after exhaustive cleavage is approx. 45 000 plus or minus 15 000. These results are not consistent with a monomer molecular weight of approx. 18 500 for thiosulfate sulfurtransferase.  相似文献   

19.
Thein vitro refolding of the monomeric, mitochondrial enzyme rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), which is assisted by theE. coli chaperonins, is modulated by the 23 amino acid peptide (VHQVLYRALVSTKWLAESVRAGK) corresponding to the amino terminal sequence (1–23) of rhodanese. In the absence of the peptide, a maximum recovery of active enzyme of about 65% is achieved after 90 min of initiation of the chaperonin assisted folding reaction. In contrast, this process is substantially inhibited in the presence of the peptide. The maximum recovery of active enzyme is peptide concentration-dependent. The peptide, however, does not prevent the interaction of rhodanese with the chaperonin 60 (cpn60), which leads to the formation of the cpn60-rhodanese complex. In addition, the peptide does not affect the rate of recovery of active enzyme, although it does affect the extent of recovery. Further, the unassisted refolding of rhodanese is also inhibited by the peptide. Thus, the peptide interferes with the folding of rhodanese in either the chaperonin assisted or the unassisted refolding of the enzyme. A 13 amino acid peptide (STKWLAESVRAGK) corresponding to the amino terminal sequence (11–23) of rhodanese does not show any significant effect on the chaperonin assisted or unassisted refolding of the enzyme. The results suggest that other sequences of rhodanese, in addition to the N-terminus, may be required for the binding of cpn60, in accord with a model in which cpn60 interacts with polypeptides through multiple binding sites.  相似文献   

20.
Liver uricase of bull frog (Rana catesbeiana) was present as the soluble form in the peroxisomal matrix and consisted of four identical subunits with a molecular weight of 30,000. These properties were identical with those of fish liver uricase but differed from mammalian liver uricase. Purified uricase from the frog liver was insoluble in hypertonic, hypotonic and detergent solutions at pH 6-9. This insolubility was the same as mammalian liver uricase but differed from fish liver uricase; fish uricase was soluble in these solutions. The frog liver uricase did not cross-react immunologically with both uricases of fish and mammalian liver. An immunological cross-reactivity of liver uricase was observed among amphibia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号