首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive analytical procedure is described for the simultaneous determination of lignocaine and the enantiomers of bupivacaine in biological fluids using diazepam as an internal standard. After solvent extraction into hexane, the local anaesthetics were separated using an α1-acid glycoprotein (AGP) column and detected at 214 nm. Calibration curves were linear (r2>0.99) in the concentration range of 5 to 500 ng/ml for the enantiomers of bupivacaine and 12.5 to 1000 ng/ml for lignocaine. The corresponding limits of detection were 4 ng/ml and 10 ng/ml, respectively. The method was applied to the analysis of plasma from a healthy woman undergoing tubal ligation.  相似文献   

2.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

3.
A high-performance liquid chromatographic method is described for the determination of free captopril in human plasma. (NAC) was used as an internal standard. Plasma samples were immediately derivatized with N-(1-pyrenyl)maleimide (NPM) and stabilized with 11 M HCl. The drug of interest was isolated using a liquid-liquid extraction with ethyl acetate and separation was obtained using a reversed-phase column under isocratic conditions with fluorescence detection. The sample volume was 150 μl plasma. The intra- and inter-day accuracy and precision, determined as relative error and coefficient of variation respectively, were lessthan 10%. The lower limit of quantitation, based on standards with acceptable coefficients of variation, was 25 ng/ml. No endogenous compounds were found to interfere. The linearity was assessed in the range of 25–600 ng/ml. This method has been demonstrated to be suitable for pharmacokinetic studies in humans.  相似文献   

4.
A high-performance liquid chromatographic assay for O6-benzylguanine utilizing liquid-liquid extraction and reversed-phase chromatography has been developed. Plasma samples were alkalinized, extracted into ethyl acetate, evaporated, and the residues were constituted and chromatographed. Separation was accomplished by gradient elution with a mobile phase of methanol, acetonitrile, and phosphate buffer, pH 3.2. Eluted compounds were detected spectrophotometrically at 280 nm. Sample quantitation was obtained from the regression line of six-point standard curves ranging from 25 to 400 ng/ml. O6-Benzylguanine peak heights were compared to peak heights of O6-(p-chlorobenzyl)guanine (internal standard). The average regression coefficient was 0.999 (n = 4). High concentration (305 ng/ml) and low concentration (38 ng/ml) quality control samples were determined with a day-to-day relative standard deviation of 7 and 8%, respectively (n = 18). The within-day relative standard deviations were 2.7 and 3.0% (n = 18) for the high and low concentration quality control specimens, respectively. Sample quantitation was reliable to 25 ng/ml with a signal-to-noise ratio of 8:1. This method was applied to plasma samples obtained from patients in a clinical trial of O6-benzylguanine.  相似文献   

5.
In this paper we develop an high-performance liquid chromatographic method with ultraviolet detection for the determination of verapamil and its primary metabolite norverapamil in biological samples. Both compounds, as well as the internal standard, imipramine, were extracted from alkalinised blood, with n-hexane–isobutyl alcohol, back-extracted into 0.01 M phosphoric acid and determined using a reversed-phase column and ultraviolet monitoring at 210 nm. The average coefficient of variation obtained over the concentration range of 1–1000 ng/ml is about 3%. The detection limit is below 5 ng/ml for both compounds, and extraction recoveries close to 80%. The method was applied to a pharmacokinetic study of the drug and its active metabolite and used to analyse blood samples from verapamil treated rabbits.  相似文献   

6.
An efficient method for the determination of atenolol in human plasma and urine was developed and validated. α-Hydroxymetoprolol, a compound with a similar polarity to atenolol, was used as the internal standard in the present high-performance liquid chromatographic analysis with fluorescence detection. The assay was validated for the concentration range of 2 to 5000 ng/ml in plasma and 1 to 20 μg.ml in urine. For both plasma and urine, the lower limit of detection was 1 ng/ml. The intra-day and inter-day variabilities for plasma samples at 40 and 900 ng/ml, and urine samples at 9.5 μg/ml were <3% (n=5).  相似文献   

7.
A sensitive and selective high-performance liquid chromatographic (HPLC) method was developed for the determination of pramipexole in human plasma and urine. Plasma/urine is made alkaline before pramipexole and BHT-920 (internal standard) are extracted by ethyl ether and back-extracted with a solution that contains heptanesulfonic acid. Separation is achieved by ion-pair chromatography on a Zorbax Rx C8 column with electrochemical detection at 0.6 V for plasma and ultraviolet detection at 286 nm for urine. The retention times of pramipexole and internal standard are approximately 14.4 and 10.7 min, respectively. The assay is linear in concentration ranges of 50 to 15 000 pg/ml (plasma) and 10 to 10 000 ng/ml (urine). The correlation coefficients are greater than 0.9992 for all curves. For the plasma method, the analysis of pooled quality controls (300, 3000, and 10 000 pg/ml) demonstrates excellent precision with relative standard deviations (R.S.D.) (n=18) of 1.1%, 2.3%, and 6.8%, respectively. For the urine method, quality control pools prepared at 30, 300, and 3000 ng/ml had R.S.D. values (n=18) of 2.9%, 1.7%, and 3.0%, respectively. The plasma and urine controls were stable for more than nine and three months, respectively. The mean recoveries for pramipexole and internal standard from plasma were 97.7% and 98.2%, respectively. The mean recoveries for pramipexole and internal standard from urine were 89.8% and 95.1%, respectively. The method is accurate with all intra-day (n=6) and overall (n=18) mean values for the quality control samples being less than 6.4 and 5.8% from theoretical for plasma and urine, respectively.  相似文献   

8.
A high-performance liquid chromatographic method has been developed and tested for simultaneous extraction, elution and determination of doxorubicin and prochlorperazine content in human plasma samples. The procedure consists of extraction through a conditioned C18 solid-phase extraction cartridge, elution from a Spherisorb C8 reversed-phase column by an isocratic mobile phase (60% acetonitrile, 15% methanol and 25% buffer) followed by detection with electrochemical and fluorescence detectors. Recovery of doxorubicin and prochlorperazine from pooled human plasma samples (n=3) containing 100 ng/ml of the two drugs was 77.8±3.5% and 89.1±6.0%, respectively. The lower limits of quantitation for doxorubicin and prochlorperazine in plasma samples were 6.25 ng/ml and 10 ng/ml, respectively. A linear calibration curve was obtained for up to 2 μg/ml of doxorubicin and prochlorperazine. This combination method may be of particular value in clinical studies where phenothiazines such as prochlorperazine are used to enhance retention of doxorubicin in drug resistant tumor cells.  相似文献   

9.
An electron-capture gas chromatographic procedure was developed for the analysis of p-trifluoromethylphenol, an O-dealkylated metabolite of fluoxetine, in biological samples. A basic extraction of the biological sample was employed, followed by derivatization with pentafluorobenzenesulfonyl chloride. The internal standard, 2,4-dichlorophenol, was added to all samples used in the procedure to aid in quantitation. The practical limit of detection (signal-to-noise ratio>3) for p-trifluoromethylphenol was <5 ng/ml in human plasma samples, <10 ng/g of rat brain tissue, <25 ng/g of rat liver tissue and <25 ng/ml in human and rat urine samples. In the rat, the levels of free p-trifluoromethylphenol in the liver were 10-fold higher than those in the brain, and a substantial amount was excreted in the urine. Human urine samples contained levels of free p-trifluoromethylphenol approximately 30-fold higher than those found in human plasma samples. The procedure described is useful for the detection and quantitation of free p-trifluoromethylphenol in humans and rats treated with fluoxetine.  相似文献   

10.
A high-performance liquid chromatographic method using column switching was applied to the direct determination of two local anaesthetics, ropivacaine and bupivacaine, in human plasma. The method is intended to be used in a combined LC—GC system; here only the LC-part is described. After addition of internal standard, the samples were filtered and directly injected into a semipermeable surface (SPS) pre-column where the analytes were strongly retained and separated from many endogenous compounds by a short washing step. The retained analytes were transferred by a buffered methanol phase from the pre-column into a carbonaceous HPLC column and they were detected by UV detection at 254 nm. The SPS pre-column could withstand numerous (> 200) direct injections of plasma samples (10 μl). The method has a detection limit of 8.2 ng and requires a total assay time of 15 min per plasma sample. Quantitative recoveries were obtained over the range 3.3–114 μg/ml with inter-day precisions of 1.6–5.2% (C.V.).  相似文献   

11.
A rapid and sensitive method for extracting temazepam from human serum and urine is presented. Free temazepam is extracted from plasma and urine samples using n-butyl chloride with nitrazepam as the internal standard. Temazepam glucuronide is analyzed as free temazepam after incubating extracts with β-glucuronidase. Separation is achieved using a C8 reversed-phase column with a methanol—water—phosphate buffer mobile phase. An ultraviolet detector operated at 230 nm is used and a linear response is observed from 20 ng/ml to 10 μg/ml. The limit of detection is 15.5 ng/ml and the limit of quantitation is 46.5 ng/ml. Coefficients of variation are less than 10% for concentrations greater than 50 ng/ml. Application of the methodology is demonstrated in a pharmacokinetic study using eight healthy male subjects.  相似文献   

12.
(E)-5-(2-Bromovinyl)-2′-deoxyuridine is an antiviral drug used for treatment of infections with Herpes simplex virus type 1 as well as Varicella zoster virus. Two fast methods for the determination of the drug and its metabolite in plasma and urine by capillary electrophoresis have been developed. The plasma method can be used for measurement of total as well as unbound drug and metabolite. Plasma and urine samples are prepared for measuring by liquid/liquid extraction resulting in a limit of quantification of 40 ng/ml for total and 10 ng/ml for free BVdU in plasma and 170 ng/ml in urine. Inter- as well as intra-day precision were found to be better than 10% and both methods have been used for drug monitoring of patients.  相似文献   

13.
A rapid, reliable and specific reversed-phase high-performance liquid chromatographic procedure is described for the determination of diphenylpyraline hydrochloride at nanogram concentrations in plasma and urine. After extraction of the drug with n-pentane-2-propanol (50:1) from alkalinized samples, the organic extract was evaporated to dryness, reconstituted with methanol and chromatographed using a 5-μm Asahipak ODP-50 C18 column with UV detection at 254 nm. The elution time for diphenylpyraline was 7.9 min. The overall recovery of diphenylpyraline from spiked plasma and urine samples at concentrations ranging from 53 to 740 ng/ml were 94.65% and 92.29%, respectively. Linearity and precision data for plasma and urine standards after extraction were acceptable. The limit of detection was 15 ng/ml for both plasma and urine samples at 0.002 AUFS.  相似文献   

14.
AG 331 is a novel thymidylate synthase inhibitor currently in Phase I clinical trial. To determine the pharmacokinetic parameters of AG 331 in human subjects, a suitable analytical method was developed using high-performance liquid chromatography. Serum and urine samples were prepared using both solid-phase extraction and solvent extraction. Either 4,4′-diaminodiphenyl sulfone or benz[cd]indole-2(1H)-one were used as internal standards for the method. A reversed-phase C18 analytical column completely resolved the drug and internal standard peaks from non-specific substances present in biological matrix. The method was validated for precision, accuracy, and reproducibility in serum and was linear over a concentration range of 50–2000 ng/ml, with a limit of detection of 20.0 ng/ml and a quantifiable limit of 50 ng/ml.  相似文献   

15.
A sensitive high-performance liquid chromatographic method for determination of intact glibenclamide in human plasma has been developed. Sample clean-up prior to chromatographic analysis was accomplished by extraction of the drug using a solid-phase RP-8 or RP-18 cartridge instead of the conventional liquid-liquid extraction methods described. For the separation of the drug from the endogenous components a reversed-phase column (LiChrosorb RP-8) of 5 μm particle size and 250×4 mm I.D., together with a mobile phase consisting of acetonitrile-12 μM perchloric acid (47:53) was selected. The method employs progesterone as an internal standard, and a reversed-phase column combined with UV detection of the drug at 230 nm. The detector response was linear up to the concentration of 400 ng/ml and the average recovery was 100.36%. The sensitivity of the method was 5 ng/ml.  相似文献   

16.
17.
A sensitive and specific high-performance liquid chromatographic method with fluorescence detection (excitation wavelength: 280 nm; emission wavelength: 360 nm) was developed and validated for the determination of vinorelbine in plasma and blood samples. The sample pretreatment procedure involved two liquid–liquid extraction steps. Vinblastine served as the internal standard. The system uses a Spherisorb cyano analytical column (250×4.6 mm I.D.) packed with 5 μm diameter particles as the stationary phase and a mobile phase of acetonitrile–80 mM ammonium acetate (50:50, v/v) adjusted to pH 2.5 with hydrochloric acid. The assay showed linearity from 1 to 100 ng/ml in plasma and from 2.5 to 100 ng/ml in blood. The limits of quantitation were 1 ng/ml and 2.5 ng/ml, respectively. Precision expressed as RSD was in the range 3.9 to 20% (limit of quantitation). Accuracy ranged from 92 to 120%. Extraction recoveries from plasma and blood averaged 101 and 75%, respectively. This method was used to follow the time course of the concentration of vinorelbine in human plasma and blood samples after a 10-min infusion period of 20 mg/m2 of this drug in patients with metastatic cancer.  相似文献   

18.
Methods for the determination of celecoxib in human plasma and rat microdialysis samples using liquid chromatography tandem mass spectrometry are described. Celecoxib and an internal standard were extracted from plasma by solid-phase extraction with C18 cartridges. Thereafter compounds were separated on a short narrow bore RP C18 column (30×2 mm). Microdialysis samples did not require extraction and were injected directly using a narrow bore RP C18 column (70×2 mm). The detection was by a PE Sciex API 3000 mass spectrometer equipped with a turbo ion spray interface. The compounds were detected in the negative ion mode using the mass transitions m/z 380→316 and m/z 366→302 for celecoxib and internal standard, respectively. The assay was validated for human plasma over a concentration range of 0.25–250 ng/ml using 0.2 ml of sample. The assay for microdialysis samples (50 μl) was validated over a concentration range of 0.5–20 ng/ml. The method was utilised to determine pharmacokinetics of celecoxib in human plasma and in rat spinal cord perfusate.  相似文献   

19.
Nelfinavir mesylate, a potent and orally bioavailable inhibitor of HIV-1 protease (Ki=2 nM), has undergone Phase III clinical evaluation in a large population of HIV-positive patients. A high-performance liquid chromatography analytical method was developed to determine the pharmacokinetic parameters of the free base, nelfinavir, in these human subjects. The method involved the extraction of nelfinavir and an internal standard, 6,7-dimethyl-2,3-di-(2-pyridyl)quinoxaline, from 250 μl of human plasma with a mixture of ethyl acetate–acetonitrile (90:10, v/v). The analysis was via ultraviolet detection at 220 nm using a reversed-phase C18 analytical column and a mobile phase consisting of 25 mM monobasic sodium phosphate buffer (adjusted to pH 3.4 with phosphoric acid)–acetonitrile (58:42, v/v) that resolved the drug and internal standard peaks from non-specific substances in human plasma. The method was validated under Good Laboratory Practice (GLP) conditions for specificity, inter- and intra-assay precision and accuracy, absolute recovery and stability. The mean recovery ranged from 92.4 to 83.0% for nelfinavir and was 95.7% for the internal standard. The method was linear over a concentration range of 0.0300 μg/ml to 10 μg/ml, with a minimum quantifiable level of 0.0500 μg/ml for nelfinavir.  相似文献   

20.
A procedure using a chirobiotic V column is presented which allows separation of the enantiomers of citalopram and its two N-demethylated metabolites, and of the internal standard, alprenolol, in human plasma. Citalopram, demethylcitalopram and didemethylcitalopram, as well as the internal standard, were recovered from plasma by liquid–liquid extraction. The limits of quantification were found to be 5 ng/ml for each enantiomer of citalopram and demethylcitalopram, and 7.5 ng/ml for each enantiomer of didemethylcitalopram. Inter- and intra-day coefficients of variation varied from 2.4% to 8.6% for S- and R-citalopram, from 2.9% to 7.4% for S- and R-demethylcitalopram, and from 5.6% to 12.4% for S- and R-didemethylcitalopram. No interference was observed from endogenous compounds following the extraction of plasma samples from 10 different patients treated with citalopram. This method allows accurate quantification for each enantiomer and is, therefore, well suited for pharmacokinetic and drug interaction investigations. The presented method replaces a previously described highly sensitive and selective high-performance liquid chromatography procedure using an acetylated β-cyclobond column which, because of manufactural problems, is no longer usable for the separation of the enantiomers of citalopram and its demethylated metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号