首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder caused by the loss of motor neurons. Its etiology remains unknown, but several hypothesis have been raised to explain motor neuron death, including oxidative stress. Dysregulation of cellular iron metabolism can lead to increased oxidative stress, and existing data argue for a role of iron metabolism in ALS pathophysiology.

Methods

We performed a retrospective analysis of iron metabolism (IM) variables (serum levels of iron, transferrin, ferritin, and TSC for Transferrin Saturation Coefficient) in a cohort of 694 ALS patients and 297 healthy controls.

Results

Serum ferritin levels and TSC were higher, whereas serum transferrin levels were lower in ALS patients than controls. In addition, patients with a high level serum ferritin had a shorter survival time compared to those with low level serum ferritin (618 days versus 921 days for men subgroup; p = .007). Site of onset and ALS-FRS score were not associated with IM variables.

Conclusion

This study suggests that ALS patients may have increased iron storage, as measured by increased serum ferritin and TSC. Elevated serum ferritin may also have a deleterious impact on survival in ALS.  相似文献   

2.
3.

Introduction

In a recent screening to detect biomarkers in systemic lupus erythematosus (SLE), expression of the iron storage protein, ferritin, was increased. Given that proteins that regulate the storage, transfer and release of iron play an important role in inflammation, this study aims to determine the serum and urine levels of ferritin and of the iron transfer protein, transferrin, in lupus patients and to correlate these levels with disease activity, inflammatory cytokine levels and markers of anemia.

Methods

A protein array was utilized to measure ferritin expression in the urine and serum of SLE patients and healthy controls. To confirm these results as well as the role of the iron transfer pathway in SLE, ELISAs were performed to measure ferritin and transferrin levels in inactive or active SLE patients and healthy controls. The relationship between ferritin/transferrin levels and inflammatory markers and anemia was next analyzed.

Results

Protein array results showed elevated ferritin levels in the serum and urine of lupus patients as compared to controls, which were further validated by ELISA. Increased ferritin levels correlated with measures of disease activity and anemia as well as inflammatory cytokine titers. Though active SLE patients had elevated urine transferrin, serum transferrin was reduced.

Conclusion

Urine ferritin and transferrin levels are elevated significantly in SLE patients and correlate with disease activity, bolstering previous reports. Most importantly, these changes correlated with the inflammatory state of the patients and anemia of chronic disease. Taken together, altered iron handling, inflammation and anemia of chronic disease constitute an ominous triad in SLE.  相似文献   

4.

Background

Elevated endogenous phosphoinositide-3-kinase (PI3K) activity is critical for cell proliferation in gliomas. Iron availability is one of the essential factors for cell growth and proliferation. However, any relation between PI3K and cellular iron homeostasis has not been understood so far.

Methods

Glioma cells and human primary astrocytes were treated with class I PI3K inhibitors to examine regulation of iron homeostasis components. Regulation of ferritin was detected at mRNA and translational level. Labile iron pool (LIP) and cell proliferation were examined in glioma cells and human primary astrocytes.

Results

Blocking of PI3K activity elevated ferritin level by 6–10 folds in glioma cells by augmenting mRNA expression of ferritin subunits and also by influencing ferritin translation. IRE-IRP interaction was affected due to conversion of IRP1 to cytosolic aconitase that was influenced by increased iron-sulfur scaffold protein iron-sulfur cluster assembly enzyme (ISCU) level. Elevated ferritin sequestered LIP to affect cell proliferation that was reversed in silencing ferritin by siRNAs of ferritin-H and ISCU. Human primary astrocyte with little PI3K activity did not show any change in ferritin level, LIP and cell proliferation by PI3K inhibitors.

Conclusions

PI3K inhibition promotes ferritin synthesis by dual mechanism resulting sequestration of iron to limit its availability for cell proliferation in glioma cells but not in primary astrocytes.General Significance: This observation establishes a relation between PI3K signalling and iron homeostasis in glioma cells. It also implies that activated PI3K controls ferritin expression to ensure availability of adequate iron required for cell proliferation.  相似文献   

5.
6.

Objective

It has been reported that hyporesponsiveness to erythropoiesis-stimulating agent (ESA) is associated with adverse events in patients on maintenance hemodialysis (MHD). However, it has not been determined whether higher iron storage is associated with an improved response, including better survival, to ESA.

Design and Method

We measured serum ferritin, hemoglobin (Hb), and transferrin saturation (TSAT) levels every three months for two years in 1,095 MHD patients. The weekly dose of ESA to Hb ratio was also calculated as an index of ESA responsiveness (ERI).

Results

A significant correlation (p<0.001, R = 0.89) between ferritin and Hb was only observed in the patients with ferritin levels <50 ng/mL. High-dose (≥50 mg/week) intravenous iron administration, female sex, low serum albumin, and angiotensin-converting enzyme inhibitor/angiotensin receptor blocker use were significant predictors of a high ERI value (>280); however, serum ferritin and TSAT levels did not predict a higher ERI. In the time-dependent Cox hazard model, the risk for a composite event in the patients with a high ERI (≥280) and a high ferritin level (≥100 ng/mL) was significantly greater (hazard ratio [HR], 2.09, P = 0.033) than that for patients with a high ERI and a low ferritin (<100 ng/mL) level.

Conclusion

Hb was dependent upon ferritin levels in patients with ferritin levels <50 ng/mL but not in patients with ferritin levels ≥50 ng/mL. Patients with hyporesponsiveness to ESA had a greater risk of composite events, but ERI was unrelated to iron storage.  相似文献   

7.

Background

Extensive in-vitro studies have focused on elucidating the mechanism of iron uptake and mineral core formation in ferritin. However, despite a plethora of studies attempting to characterize iron release under different experimental conditions, the in-vivo mobilization of iron from ferritin remains poorly understood.Several iron-reductive mobilization pathways have been proposed including, among others, flavin mononucleotides, ascorbate, glutathione, dithionite, and polyphenols. Here, we investigate the kinetics of iron release from ferritin by reduced flavin nucleotide, FMNH2, and discuss the physiological significance of this process in-vivo.

Methods

Iron release from horse spleen ferritin and recombinant human heteropolymer ferritin was followed by the change in optical density of the Fe(II)–bipyridine complex using a Cary 50 Bio UV–Vis spectrophotometer. Oxygen consumption curves were followed on a MI 730 Clark oxygen microelectrode.

Results

The reductive mobilization of iron from ferritin by the nonenzymatic FMN/NAD(P)H system is extremely slow in the presence of oxygen and might involve superoxide radicals, but not FMNH2. Under anaerobic conditions, a very rapid phase of iron mobilization by FMNH2 was observed.

Conclusions

Under normoxic conditions, FMNH2 alone might not be a physiologically significant contributor to iron release from ferritin.

General significance

There is no consensus on which iron release pathway is predominantly responsible for iron mobilization from ferritin under cellular conditions. While reduced flavin mononucleotide (FMNH2) is one likely candidate for in-vivo ferritin iron removal, its significance is confounded by the rapid oxidation of the latter by molecular oxygen.  相似文献   

8.

Background  

In aerobically grown cells, iron homeostasis and oxidative stress are tightly linked processes implicated in a growing number of diseases. The deregulation of iron homeostasis due to gene defects or environmental stresses leads to a wide range of diseases with consequences for cellular metabolism that remain poorly understood. The modelling of iron homeostasis in relation to the main features of metabolism, energy production and oxidative stress may provide new clues to the ways in which changes in biological processes in a normal cell lead to disease.  相似文献   

9.

Background

Ferritin detoxifies excess of free Fe(II) and concentrates it in the form of ferrihydrite (Fe2O3·xH2O) mineral. When in need, ferritin iron is released for cellular metabolic activities. However, the low solubility of Fe(III) at neutral pH, its encapsulation by stable protein nanocage and presence of dissolved O2 limits in vitro ferritin iron release.

Methods

Physiological reducing agent, NADH (E1/2?=??330?mV) was inefficient in releasing the ferritin iron (E1/2?=?+183?mV), when used alone. Thus, current work investigates the role of low concentration (5–50?μM) of phenazine based electron transfer (ET) mediators such as FMN, PYO - a redox active virulence factor secreted by Pseudomonas aeruginosa and PMS towards iron mobilization from recombinant frog M ferritin.

Results

The presence of dissolved O2, resulting in initial lag phase and low iron release in FMN, had little impact in case of PMS and PYO, reflecting their better ET relay ability that facilitates iron mobilization. The molecular modeling as well as fluorescence studies provided further structural insight towards interaction of redox mediators on ferritin surface for electron relay.

Conclusions

Reductive mobilization of iron from ferritin is dependent on the relative rate of NADH oxidation, dissolved O2 consumption and mineral core reduction, which in turn depends on E1/2 of these mediators and their interaction with ferritin.

General significance

The current mechanism of in vitro iron mobilization from ferritin by using redox mediators involves different ET steps, which may help to understand the iron release pathway in vivo and to check microbial growth.  相似文献   

10.
11.

Background

Most models for ferritin iron release are based on reduction and chelation of iron. However, newer models showing direct Fe(III) chelation from ferritin have been proposed. Fe(III) chelation reactions are facilitated by gated pores that regulate the opening and closing of the channels.

Scope of review

Results suggest that iron core reduction releases hydroxide and phosphate ions that exit the ferritin interior to compensate for the negative charge of the incoming electrons. Additionally, chloride ions are pumped into ferritin during the reduction process as part of a charge balance reaction. The mechanism of anion import or export is not known but is a natural process because phosphate is a native component of the iron mineral core and non-native anions have been incorporated into ferritin in vitro. Anion transfer across the ferritin protein shell conflicts with spin probe studies showing that anions are not easily incorporated into ferritin. To accommodate both of these observations, ferritin must possess a mechanism that selects specific anions for transport into or out of ferritin. Recently, a gated pore mechanism to open the 3-fold channels was proposed and might explain how anions and chelators can penetrate the protein shell for binding or for direct chelation of iron.

Conclusions and general significance

These proposed mechanisms are used to evaluate three in vivo iron release models based on (1) equilibrium between ferritin iron and cytosolic iron, (2) iron release by degradation of ferritin in the lysosome, and (3) metallo-chaperone mediated iron release from ferritin.  相似文献   

12.
High levels of iron, measured as serum ferritin, are associated to a worse outcome after stroke. However, it is not known whether ischemic damage might increase ferritin levels as an acute phase protein or whether iron overload affects stroke outcome. The objectives are to study the effect of stroke on serum ferritin and the contribution of iron overload to ischemic damage.Swiss mice were fed with a standard diet or with a diet supplemented with 2.5% carbonyl iron to produce iron overload. Mice were submitted to permanent (by ligature and by in situ thromboembolic models) or transient focal ischemia (by ligature for 1 or 3 h).Treatment with iron diet produced an increase in the basal levels of ferritin in all the groups. However, serum ferritin did not change after ischemia. Animals submitted to permanent ischemia had the same infarct volume in the groups studied. However, in mice submitted to transient ischemia followed by early (1 h) but not late reperfusion (3 h), iron overload increased ischemic damage and haemorrhagic transformation.Iron worsens ischemic damage induced by transient ischemia and early reperfusion. In addition, ferritin is a good indicator of body iron levels but not an acute phase protein after ischemia.  相似文献   

13.

Background

Serum ferritin was discovered in the 1930s, and was developed as a clinical test in the 1970s. Many diseases are associated with iron overload or iron deficiency. Serum ferritin is widely used in diagnosing and monitoring these diseases.

Scope of review

In this chapter, we discuss the role of serum ferritin in physiological and pathological processes and its use as a clinical tool.

Major conclusions

Although many aspects of the fundamental biology of serum ferritin remain surprisingly unclear, a growing number of roles have been attributed to extracellular ferritin, including newly described roles in iron delivery, angiogenesis, inflammation, immunity, signaling and cancer.

General significance

Serum ferritin remains a clinically useful tool. Further studies on the biology of this protein may provide new biological insights.  相似文献   

14.

Background

All reported plant ferritins are heteropolymers comprising two different H-type subunits. Whether or not homopolymeric plant ferritin occurs in nature is an open question.

Methods

A homopolymeric phytoferritin from adzuki bean seeds (ASF) was obtained by various protein purification techniques for the first time, which shares the highest identity (89.6%) with soybean seed H-1 ferritin (rH-1). Therefore, we compared iron oxidation activity and protein stability of ASF with those of rH-1 by stopped-flow combined with light scattering or UV/Vis spectrophotography, SDS- and native- PAGE analyses. Additionally, a new rH-1 variant (S68E) was prepared by site-directed mutagenesis approach to elucidate their difference in protein stability.

Results

At high iron loading of protein, the extension peptide (EP) of plant ferritin was involved in iron oxidation, and the EP of ASF exhibited a much stronger iron oxidative activity than that of rH-1. Besides, ASF is more stable than rH-1 during storage, which is ascribed to one amino acid residue, Ser68.

Conclusions

ASF exhibits a different mechanism in iron oxidation from rH-1 at high iron loading of protein, and a higher stability than rH-1. These differences are mainly stemmed from their different EP sequences.

General significance

This work demonstrates that plant cells have evolved the EP of phytoferritin to control iron chemistry and protein stability by exerting a fine tuning of its amino acid sequence.  相似文献   

15.

Background

The concentration of iron in the brain increases with aging. Furthermore, it has also been observed that patients suffering from neurological diseases (e.g. Parkinson, Alzheimer…) accumulate iron in the brain regions affected by the disease. Nevertheless, it is still not clear whether this accumulation is the initial cause or a secondary consequence of the disease. Free iron excess may be an oxidative stress source causing cell damage if it is not correctly stored in ferritin cores as a ferric iron oxide redox-inert form.

Scope

Both, the composition of ferritin cores and their location at subcellular level have been studied using analytical transmission electron microscopy in brain tissues from progressive supranuclear palsy (PSP) and Alzheimer disease (AD) patients.

Major conclusions

Ferritin has been mainly found in oligodendrocytes and in dystrophic myelinated axons from the neuropili in AD. In relation to the biomineralization of iron inside the ferritin shell, several different crystalline structures have been observed in the study of physiological and pathological ferritin. Two cubic mixed ferric–ferrous iron oxides are the major components of pathological ferritins whereas ferrihydrite, a hexagonal ferric iron oxide, is the major component of physiological ferritin. We hypothesize a dysfunction of ferritin in its ferroxidase activity.

General significance

The different mineralization of iron inside ferritin may be related to oxidative stress in olygodendrocites, which could affect myelination processes with the consequent perturbation of information transference.  相似文献   

16.
The iron redox and hydrolysis chemistry of the ferritins   总被引:2,自引:0,他引:2  

Background

Ferritins are ubiquitous and well-characterized iron storage and detoxification proteins. In bacteria and plants, ferritins are homopolymers composed of H-type subunits, while in vertebrates, they typically consist of 24 similar subunits of two types, H and L. The H-subunit is responsible for the rapid oxidation of Fe(II) to Fe(III) at a dinuclear center, whereas the L-subunit appears to help iron clearance from the ferroxidase center of the H-subunit and support iron nucleation and mineralization.

Scope of review

Despite their overall similar structures, ferritins from different origins markedly differ in their iron binding, oxidation, detoxification, and mineralization properties. This chapter provides a brief overview of the structure and function of ferritin, reviews our current knowledge of the process of iron uptake and mineral core formation, and highlights the similarities and differences of the iron oxidation and hydrolysis chemistry in a number of ferritins including those from archaea, bacteria, amphibians, and animals.

General Significance

Prokaryotic ferritins and ferritin-like proteins (Dps) appear to preferentially use H2O2 over O2 as the iron oxidant during ferritin core formation. While the product of iron oxidation at the ferroxidase centers of these and other ferritins is labile and is retained inside the protein cavity, the iron complex in the di-iron cofactor proteins is stable and remains at the catalytic site. Differences in the identity and affinity of the ferroxidase center ligands to iron have been suggested to influence the distinct reaction pathways in ferritins and the di-iron cofactor enzymes.

Major conclusions

The ferritin 3-fold channels are shown to be flexible structures that allow the entry and exit of different ions and molecules through the protein shell. The H- and L-subunits are shown to have complementary roles in iron oxidation and mineralization, and hydrogen peroxide appears to be a by-product of oxygen reduction at the FC of most ferritins. The di-iron(III) complex at the FC of some ferritins acts as a stable cofactor during iron oxidation rather than a catalytic center where Fe(II) is oxidized at the FC followed by its translocation to the protein cavity.  相似文献   

17.

Background

Lung injury caused by both inhaled dusts and infectious agents depends on increased availability of iron and metal-catalyzed oxidative stress. Because inhaled particles, such as silica, and certain infections can cause secondary pulmonary alveolar proteinosis (PAP), we tested the hypothesis that idiopathic PAP is associated with an altered iron homeostasis in the human lung.

Methods

Healthy volunteers (n = 20) and patients with idiopathic PAP (n = 20) underwent bronchoalveolar lavage and measurements were made of total protein, iron, tranferrin, transferrin receptor, lactoferrin, and ferritin. Histochemical staining for iron and ferritin was done in the cell pellets from control subjects and PAP patients, and in lung specimens of patients without cardiopulmonary disease and with PAP. Lavage concentrations of urate, glutathione, and ascorbate were also measured as indices of oxidative stress.

Results

Lavage concentrations of iron, transferrin, transferrin receptor, lactoferrin, and ferritin were significantly elevated in PAP patients relative to healthy volunteers. The cells of PAP patients had accumulated significant iron and ferritin, as well as considerable amounts of extracellular ferritin. Immunohistochemistry for ferritin in lung tissue revealed comparable amounts of this metal-storage protein in the lower respiratory tract of PAP patients both intracellularly and extracellularly. Lavage concentrations of ascorbate, glutathione, and urate were significantly lower in the lavage fluid of the PAP patients.

Conclusion

Iron homeostasis is altered in the lungs of patients with idiopathic PAP, as large amounts of catalytically-active iron and low molecular weight anti-oxidant depletion are present. These findings suggest a metal-catalyzed oxidative stress in the maintenance of this disease.  相似文献   

18.

Background

Lung injury caused by both inhaled dusts and infectious agents depends on increased availability of iron and metal-catalyzed oxidative stress. Because inhaled particles, such as silica, and certain infections can cause secondary pulmonary alveolar proteinosis (PAP), we tested the hypothesis that idiopathic PAP is associated with an altered iron homeostasis in the human lung.

Methods

Healthy volunteers (n = 20) and patients with idiopathic PAP (n = 20) underwent bronchoalveolar lavage and measurements were made of total protein, iron, tranferrin, transferrin receptor, lactoferrin, and ferritin. Histochemical staining for iron and ferritin was done in the cell pellets from control subjects and PAP patients, and in lung specimens of patients without cardiopulmonary disease and with PAP. Lavage concentrations of urate, glutathione, and ascorbate were also measured as indices of oxidative stress.

Results

Lavage concentrations of iron, transferrin, transferrin receptor, lactoferrin, and ferritin were significantly elevated in PAP patients relative to healthy volunteers. The cells of PAP patients had accumulated significant iron and ferritin, as well as considerable amounts of extracellular ferritin. Immunohistochemistry for ferritin in lung tissue revealed comparable amounts of this metal-storage protein in the lower respiratory tract of PAP patients both intracellularly and extracellularly. Lavage concentrations of ascorbate, glutathione, and urate were significantly lower in the lavage fluid of the PAP patients.

Conclusion

Iron homeostasis is altered in the lungs of patients with idiopathic PAP, as large amounts of catalytically-active iron and low molecular weight anti-oxidant depletion are present. These findings suggest a metal-catalyzed oxidative stress in the maintenance of this disease.  相似文献   

19.
Intracellular ferritin in newt (Triturus cristatus) erythroblasts was accessible to the chelating effects of EDTA and pyridoxal phosphate. EDTA (0.5-1 mM) promoted release of radioactive iron from ferritin of pulse-labelled erythroblasts during chase incubation, but its continuous presence was not necessary for ferritin iron mobilization. Brief exposure to EDTA was sufficient to release 60-70% of ferritin 59Fe content during ensuing chase in EDTA-free medium. EDTA also suppressed cellular iron uptake and utilization for heme synthesis, but these activities were restored upon its removal. Pyridoxal-5'-phosphate (0.5-5 mM) also stimulated loss of radioactive iron from ferritin; however, ferritin iron release by pyridoxal phosphate required its continued presence. Unlike EDTA, pyridoxal phosphate did not interfere with iron uptake or its utilization for heme synthesis. Chelator-mobilized ferritin iron accumulated initially in the hemolysate as a low-molecular-weight component and appeared to be eventually released into the medium. No radioactive ferritin was found in the medium of chelator-treated cells, indicating that secretion or loss of ferritin was not responsible for decreasing cellular ferritin 59Fe content. Moreover, there was no transfer of radioactive iron between the low-molecular-weight component released into the medium and plasma transferrin. These results indicate that chelator-released ferritin iron is not available for cellular utilization in heme synthesis and that ferritin iron released by this process is not an alternative or complementary iron source for heme synthesis. Correlation of these data with effects of succinylacetone inhibition of heme synthesis and with previous studies indicates that the main role of erythroid cell ferritin is absorption and storage of excess iron not used for heme synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号