首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advantages of oriented immobilization of biologically active proteins are good steric accessibilities of active binding sites and increased stability. This not only may help to increase the production of preparative procedures but is likely to promote current knowledge about how the living cells or tissues operate. Protein inactivation starts with the unfolding of the protein molecule by the contact of water with hydrophobic clusters located on the surface of protein molecules, which results in ice-like water structure. Reduction of the nonpolar surface area by the formation of a suitable biospecifc complex or by use of carbohydrate moieties thus may stabilize proteins. This review discusses oriented immobilization of antibodies by use of immobilized protein A or G. The section about oriented immobilization of proteins by use of their suitable antibodies covers immobilization of enzymes utilizing their adsorption on suitable immunosorbents prepared using monoclonal or polyclonal antibodies, preparation of bioaffinity adsorbent for the isolation of concanavalin A and immobilization of antibodies by use of antimouse immunoglobulin G, Fc-specific (i.e. specific towards the constant region of the molecule). In the further section immobilization of antibodies and enzymes through their carbohydrate moieties is described. Oriented immobilization of proteins can be also based on the use of boronate affinity gel or immobilized metal ion affinity chromatography technique. Biotin–avidin or streptavidin techniques are mostly used methods for oriented immobilization. Site-specific attachment of proteins to the surface of solid supports can be also achieved by enzyme, e.g., subtilisin, after introduction a single cysteine residue by site-directed mutagenesis.  相似文献   

2.
The in vitro effects of antibodies, complement, and (or) macrophages on Treponema pallidum have been previously characterized using relatively simple systems of organisms incubated with the immune components. In vivo, the more complex environment may alter immune reactivity. Experiments were performed to determine whether immobilizing and neutralizing antibodies retained their effectiveness in a more complex environment involving cultured mammalian cells. Two different protocols were used. In protocol A treponemes and normal or immune serum were mixed and added immediately to the cultured cells. In protocol B treponemes were preincubated for 18 h with cultured cells to maximize treponemal attachment; then normal or immune serum was added. With both protocols, attachment of organisms resulted in less efficient immobilization and neutralization. In further experiments, cultured cells were disrupted with Triton X, leaving cytoskeletal remnants on the vessel surface. Identical immobilization and neutralization experiments were performed in the presence of these remnants. In contrast to the findings with viable cultured cells, treponemal attachment to these nonviable remnants did not effect either antibody reaction. Attached organisms were immobilized or neutralized just as efficiently as unattached organisms. Results are discussed in terms of the altered immune reactivity in more complex in vitro environments.  相似文献   

3.
A new strategy has been developed for site-directed immobilization/rigidification of genetically modified enzymes through multipoint covalent attachment on bifunctional disulfide-glyoxyl supports. Here the mechanism is described as a two-step immobilization/rigidification protocol where the enzyme is directly immobilized by thiol-disulfide exchange between the β-thiol of the single genetically introduced cysteine and the few disulfide groups presented on the support surface (3 μmol/g). Afterward, the enzyme is uniquely rigidified by multipoint covalent attachment (MCA) between the lysine residues in the vicinity of the introduced cysteine and the many glyoxyl groups (220 μmol/g) on the support surface. Both site-directed immobilization and rigidification have been possible only on these novel bifunctional supports. In fact, this technology has made possible to elucidate the protein regions where rigidification by MCA promoted higher protein stabilizations. Hence, rigidification of vicinity of position 333 from lipase 2 from Geobacillus thermocatenulatus (BTL2) promoted a stabilization factor of 33 regarding the unipunctual site-directed immobilized derivative. In the same context, rigidification of penicillin G acylase from E. coli (PGA) through position β201 resulted in a stabilization factor of 1069. Remarkably, when PGA was site-directed rigidified through that position, it presented a half-life time of 140 h under 60% (v/v) of dioxane and 4 °C, meaning a derivative eight times more stable than the PGA randomly immobilized on glyoxyl-disulfide agarose. Herein we have opened a new scenario to optimize the stabilization of proteins via multipoint covalent immobilization, which may represent a breakthrough in tailor-made tridimensional rigidification of proteins.  相似文献   

4.
Mutagenesis and immobilization are usually considered to be unrelated techniques with potential applications to improve protein properties. However, there are several reports showing that the use of site-directed mutagenesis to improve enzyme properties directly, but also how enzymes are immobilized on a support, can be a powerful tool to improve the properties of immobilized biomolecules for use as biosensors or biocatalysts. Standard immobilizations are not fully random processes, but the protein orientation may be difficult to alter. Initially, most efforts using this idea were addressed towards controlling the orientation of the enzyme on the immobilization support, in many cases to facilitate electron transfer from the support to the enzyme in redox biosensors. Usually, Cys residues are used to directly immobilize the protein on a support that contains disulfide groups or that is made from gold. There are also some examples using His in the target areas of the protein and using supports modified with immobilized metal chelates and other tags (e.g., using immobilized antibodies). Furthermore, site-directed mutagenesis to control immobilization is useful for improving the activity, the stability and even the selectivity of the immobilized protein, for example, via site-directed rigidification of selected areas of the protein. Initially, only Cys and disulfide supports were employed, but other supports with higher potential to give multipoint covalent attachment are being employed (e.g., glyoxyl or epoxy-disulfide supports). The advances in support design and the deeper knowledge of the mechanisms of enzyme-support interactions have permitted exploration of the possibilities of the coupled use of site-directed mutagenesis and immobilization in a new way. This paper intends to review some of the advances and possibilities that these coupled strategies permit.  相似文献   

5.
Leptospirosis constitutes a major health problem in tropical and subtropical countries and is caused by pathogenic Leptospira. Immuno-magnetic separation (IMS) is considered to be an effective pre-enrichment method to isolate Leptospira from liquid specimen. We applied an inexpensive and simple IMS protocol using zero-length cross-linkers to immobilize polyclonal anti-leptospiral antibodies onto magnetic particles. The IMS-system has been optimized and evaluated by the assessment of the capture efficiency (CE). Main parameters that influence the conjugation procedure were optimized, including the amount of protein per milligram of magnetic particles, the pH and ionic strength of the conjugation buffer. The bead-bound leptospiral fraction was identified by using acridine orange fluorescence dye. The highest value for CE occurred when using high molar phosphate saline buffer at a pH around the isoelectric point of the antibodies. Finally, up to 3×108 leptospiral cells per mL could have been captured with approximately 50 μg of antibody-labelled particles. Strong particle agglutination could be observed during incubation for leptospiral concentrations in the range of 107–108 cells per mL. Despite covalent binding, we show that the physical adsorption parameters pH and ionic strength of the conjugation buffer greatly affect the entire immobilization process with regard to the CE, thus being able to increase the reactivity of the particles. We therefore conclude that a well-adjusted conjugation buffer for the used chemistry could possibly replace expensive and more complicated antibody immobilization methods.  相似文献   

6.
Several polyclonal antisera specific for each of the protein kinase C isotypes alpha, beta 1, beta 2 and gamma have been generated and used to monitor the purification and subsequent separation of these polypeptides. A simple protocol has been developed for the efficient co-purification of these isotypes from bovine brain. The separation of the alpha, beta 1, beta 2 and gamma isotypes has been monitored using the antibodies and pools containing pure alpha, beta 1, and gamma forms have been produced. These isotypes have been characterised for activator dependence and substrate specificity. The results indicate that while the isotypes have similar requirements for magnesium, calcium, ATP and phosphatidylserine, they differ in their dependence on phorbol esters and diacylglycerols. The isotypes also differ in their range of substrate specificities. The implications of these results are discussed.  相似文献   

7.
Protein stabilization by immobilization has been proposed to be most effective if the protein is attached to the carrier at that region where unfolding is initiated. To probe this hypothesis, we have studied the effects of site-specific immobilization on the thermal stability of mutants of the thermolysin-like protease from Bacillus stearothermophilus (TLP-ste). This enzyme was chosen because previous studies had revealed which parts of the molecule are likely to be involved in the early steps of thermal unfolding. Cysteine residues were introduced by site-directed mutagenesis into various positions of a cysteine-free variant of TLP-ste. The mutant enzymes were immobilized in a site-specific manner onto Activated Thiol-Sepharose. Two mutants (T56C, S65C) having their cysteine in the proposed unfolding region of TLP-ste showed a 9- and 12-fold increase in half-lives at 75 degrees C due to immobilization. The stabilization by immobilization was even larger (33-fold) for the T56C/S65C double mutant enzyme. In contrast, mutants containing cysteines in other parts of the TLP-ste molecule (N181C, S218C, T299C) showed only small increases in half-lives due to immobilization (maximum 2.5-fold). Thus, the stabilization obtained by immobilization was strongly dependent on the site of attachment. It was largest when TLP-ste was fixed to the carrier through its postulated unfolding region. The concept of the unfolding region may be of general use for the design of strategies to stabilize proteins.  相似文献   

8.
Pseudopeptide chemistry is gaining ground in the field of synthetic vaccine development. We have previously demonstrated the potential scope of introducing reduced amide peptide bond isosters in a site-directed design for obtaining structurally modified probes able to induce malaria infection-neutralizing antibodies derived from the MSP-1 antigen. This work reports the functional properties of polyclonal and monoclonal antibodies induced by site-directed designed MSP-2 N-terminus pseudopeptides and their capacity for antibody isotype switching in in vitro immunization. Structural properties of the native peptide and its pseudopeptide analogs are discussed within the context of these novel pseudopeptides' induced monoclonal antibody functional and physical-chemical properties.  相似文献   

9.
Antibodies are known to affect the morphology, growth, and metabolism of mollicutes and thus may serve as candidate molecules for a plantibody-based control strategy for plant-pathogenic spiroplasmas and phytoplasmas. Recombinant single-chain variable fragment (scFv) antibodies are easy to engineer and express in plants, but their inhibitory effects on mollicutes have never been evaluated and compared with those of polyclonal and monoclonal antibodies. We describe the morphology, growth, and glucose metabolism of Spiroplasma citri in the presence of polyclonal, monoclonal, and recombinant antibodies directed against the immunodominant membrane protein spiralin. We showed that the scFv antibodies had no effect on S. citri glucose metabolism but were as efficient as polyclonal antibodies in inhibiting S. citri growth in liquid medium. Inhibition of motility was also observed.  相似文献   

10.
A unique chromism-based assay technique (CHROBA) using photochromic spiropyran-containing peptides has been firstly established for detection of protein kinase A-catalyzed phosphorylation. The alternative method has advantages that avoid isolation and/or immobilization of kinase substrates to remove excess reagents including nonreactive isotope-labeled ATP or fluorescently-labeled anti-phosphoamino acid antibodies from the reaction mixture. Such a novel protocol based on thermocoloration of the spiropyran moiety in the peptide can offer not only an efficient screening method of potent kinase substrates but also a versatile analytical tool for monitoring other post-translational modification activities.  相似文献   

11.
Antibodies are known to affect the morphology, growth, and metabolism of mollicutes and thus may serve as candidate molecules for a plantibody-based control strategy for plant-pathogenic spiroplasmas and phytoplasmas. Recombinant single-chain variable fragment (scFv) antibodies are easy to engineer and express in plants, but their inhibitory effects on mollicutes have never been evaluated and compared with those of polyclonal and monoclonal antibodies. We describe the morphology, growth, and glucose metabolism of Spiroplasma citri in the presence of polyclonal, monoclonal, and recombinant antibodies directed against the immunodominant membrane protein spiralin. We showed that the scFv antibodies had no effect on S. citri glucose metabolism but were as efficient as polyclonal antibodies in inhibiting S. citri growth in liquid medium. Inhibition of motility was also observed.  相似文献   

12.
Antibodies are important tools in the study of protein function and diagnostic tests. However, traditional antiserum preparation requires a time-consuming immunization protocol and subsequent purification of polyclonal antibodies. In this study, a rapid and efficient method for polyclonal antibody preparation has been developed. Juxtanodin (JN) and silent information regulator-2 (Sirt2), both of which are oligodendrocyte-specific proteins, were used for antibody preparation. The N-terminal 170 amino acids of JN (JN170) and amino acids 231–351 of Sirt2 (Sirt2-121) were expressed as GST-tagged proteins from a pET-41a(+) vector in E. coli strain BL21 (DE3) cells. The fusion proteins were purified and used to immunize rabbits following both a traditional protocol, in which antigen was presented biweekly, and a modified rapid protocol, in which the immunization on day 1 was boosted on days 5 and 28. ELISA, Western blot analysis and immunofluorescent staining showed that antibodies produced via the rapid protocol could recognize these two oligodendrocytespecific proteins in vitro and in the rat central nervous system (CNS), respectively, similar to those produced with the traditional protocol. Thus, our study provides a novel rapid method to prepare high specificity antibodies via a modified immunization protocol and subsequent antibody purification.  相似文献   

13.
With microplate-immobilized polyclonal antibodies against a starting enzyme or its active mutant bearing consistent accessible epitopes, the maximum activity of an adsorbed enzyme/mutant (Vs) was predicted for comparison to recognize weakly-positive mutants. Rabbit antisera against Escherichia coli alkaline phosphatase (ECAP) were fractionated with 33% ammonium sulfate to yield crude polyclonal antibodies for conventional immobilization in 96-well microplates. The response curve of the activities of ECAP/mutant adsorbed by the immobilized polyclonal antibodies to protein quantities from a cell lysate was fit to an approximation model to predict Vs. With 0.4 μg crude polyclonal antibody for immobilization, Vs was consistent for ECAP in cell lysates bearing fourfold differences in its apparent specific activities when its abundance was greater than 0.9%. The ratio of Vs of the mutant R168K to that of ECAP was 1.5?±?0.1 (n?=?2), consistent with that of their specific activities after affinity purification. Unfortunately, the prediction of Vs with polyclonal antibodies that saturated microplate wells was ineffective to Pseudomonas aeruginosa arylsulfatase bearing less than 2% specific activity of ECAP. Therefore, with microplate-immobilized polyclonal antibodies to adsorb enzyme/mutants from cell lysates, high-throughput prediction of Vs was practical to recognize weakly-positive mutants of starting enzymes bearing fairly-high activities.  相似文献   

14.
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

15.
Antibodies (Ab) are commonly used in affinity chromatography (AC) as a versatile and specific means of isolating target molecules from complex mixtures. A number of procedures have been developed to immobilize antibodies on the solid matrix. Some of these methods couple the antibody via chemical groups that may be important for specific recognition of antigen, resulting in loss of functionality in a proportion of the antibodies. In other methods, the outcome of immobilization is coupling via unique sites in the Fc region of the antibody molecule, ensuring orientation of the antibody combining sites (Fab) towards the mobile phase. This review discusses the advantages and disadvantages of the various methods available for immobilization and outlines protocols for site-directed, covalent coupling of the antibody to the solid phase that essentially retains the activity of the antibody.  相似文献   

16.
Numerous enzymes of biotechnological importance have been immobilized on magnetic nanoparticles (MNP) via random multipoint attachment, resulting in a heterogeneous protein population with potential reduction in activity due to restriction of substrate access to the active site. Several chemistries are now available, where the modifier can be linked to a single specific amino acid in a protein molecule away from the active-site, thus enabling free access of the substrate. However, rarely these site-selective approaches have been applied to immobilize enzymes on nanoparticles. In this review, for the first time, we illustrate how to adapt site-directed chemical modification (SDCM) methods for immobilizing enzymes on iron-based MNP. These strategies are mainly chemical but may additionally require genetic and enzymatic methods. We critically examine each method and evaluate their scope for simple, quick, efficient, mild and economical immobilization of enzymes on MNP. The improvements in the catalytic properties of few available examples of immobilized enzymes are also discussed. We conclude the review with the applications and future prospects of site-selectively modified magnetic enzymes and potential benefits of this technology in improving enzymes, including cold-adapted homologues, modular enzymes, and CO2-sequestering, as well as non-iron based nanomaterials.  相似文献   

17.
在免疫分析和生物芯片中,抗原-抗体特异性结合被广泛应用,其中抗体的固定化是研发高效诊断和分离工具的关键环节。生物分子工程、材料化学与交联剂化学的进步极大地促进了抗体固定化技术的发展。 抗体可以通过物理吸附、共价偶联和亲和相互作用固定到不同类型的固相表面。 抗体固定化的目标是以一种正确的空间取向将抗体固定到固相表面,在完全保留抗体构象和活性的同时最大化抗原的结合能力,这对固相化抗体的分析性能至关重要。 对固定抗体到固相载体表面的各种最新方法进行了阐述,包括物理吸附法,通过羧基、氨基、巯基、糖基和点击化学的共价结合法以及基于生物亲和作用的固定法,并对固定化抗体的表征方法进行了归纳,最后对抗体固定化方法的发展方向进行了展望。  相似文献   

18.
Protein microarrays have emerged as an indispensable research tool for providing information about protein functions and interactions through high-throughput screening. Traditional methods for immobilizing biomolecules onto solid surfaces have been based on covalent and noncovalent binding, entrapment in semipermeable membranes, microencapsulation, sol gel, and hydrogel methods. Each of these techniques has its own strengths but fails to combine the most important tenets of a functional protein microarray such as covalent attachment, native protein conformation, homogeneity of the protein monolayer, control over active site orientation, and retention of protein activity. Here we present a selective and site-directed covalent immobilization technique for proteins via a benzoxazine ring formation through a Diels-Alder reaction in water and a genetically encoded 3-amino-L-tyrosine (3-NH(2)Tyr) amino acid. Fully functional protein microarrays, with monolayer arrangements and complete control over their orientations, were generated using this strategy.  相似文献   

19.
The human androgen receptor (hAR) is an important regulatory protein particularly in male sexual differentiation. The investigation of hAR functionality has been hampered by the lack of AR specific monoclonal antibodies recognizing the functional domains of the receptor. Therefore production of high affinity mono-specific polyclonal (PAbs) and monoclonal antibodies (MAbs) directed to the hAR was initiated following the synthetic peptide (SP) strategy. Five hAR specific peptides were selected on the basis of their predicted antigenic properties avoiding homology with other steroid hormone receptors. Peptide specific polyclonal antisera were obtained following selected immunization protocols. Mono-specific polyclonal antibody responses were elicited to all peptides in mice and rabbits. Crossreactivity of the peptide specific antisera with the native hAR in various biochemical assays was observed with two out of five peptides. Peptide SP61 (hAR residues 301-320) was used for the generation site-directed MAbs specific for the hAR. Specificity for the hAR was established by immunoprecipitation, immune-complex density gradient centrifugation and immunohistochemistry on human prostate tissue sections. The multi-assay performance of the selected high affinity antibodies proved the usefulness of the straight forward peptide approach and opens a wide field of possible biochemical and physiological investigations into questions related to androgen action.  相似文献   

20.
Rhodanese has been utilized as a model enzyme for the study of protein structure-function relationships. The enzyme has recently been cloned and the recombinant enzyme is now available for investigation. However, prior to use in structure-function studies, the recombinant enzyme must be shown to have the same structure and activity as the bovine liver enzyme used in the previous studies. An immunological study of the conformations of these enzyme conformers is described. Three antibodies (two monoclonal and one polyclonal, site-directed antibody) were shown to detect distinct and nonoverlapping epitopes. The epitopes of the monoclonal antirhodanese antibodies (R207 and MAB11) were mapped to the same CNBr digest fragment of the amino terminal domain of rhodanese, and the epitope of the site-directed antibody prepared against the interdomain tether sequence of rhodanese (PAT-T1) was mapped to that region of rhodanese (residues 142–156). The rhodanese conformers were studied by monitoring the accessibility of the epitopes recognized by each antibody in each conformer using an indirect ELISA. None of the antibodies could detect its epitope on the purified liver enzyme. Two of the antibodies (R207 and PAT-T1) could also not detect their epitopes on the recombinant enzyme. However, MAB11 did detect a conformational difference between the natural and recombinant rhodanese conformers, indicating the conformational difference is localized in the first 73 amino acids of rhodanese. This difference presumably reflects the difference in the histories of the two enzymes and may be due to differences in enzyme folding, differences in the purification procedures, and differences in storage conditions—all of which could influence the final conformation of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号