首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A high-pressure liquid chromatography with ultra-violet detection method for the simultaneous determination of risperidone and 9-hydroxyrisperidone in plasma after liquid-liquid extraction has been developed. The limit of quantitation was 5 nmol/L, and the inter-day coefficient of variation was less than 8% for both compounds. The mean recoveries of risperidone and 9-hydroxyrisperidone added to plasma were 96.8 and 99.4%, with an intra-day coefficient of variation of under 5 and 6%, respectively. Studies of analytical interference showed that the most commonly co-administered antidepressants and benzodiazepines did not interfere. The method was used for the determination of the plasma concentrations of a schizophrenic patient treated daily with an oral dose of 4.5 mg risperidone. The patient suffered severe extrapyramidal side-effects after adding risperidone to his previous medication of haloperidol and levomepromazine. The risperidone plasma concentration was well above the average (182 nmol/L), which suggests that a pharmacokinetic interaction occurred, presumably due to inhibition of the enzyme CYP2D6.  相似文献   

2.
A HPLC method was developed for determination of risperidone and its therapeutically active main metabolite 9-hydroxyrisperidone in serum. After a single-step liquid-liquid extraction the analytes were separated on a C18 column and measured by UV detection at 280 nm. Inter-day coefficient of variation was <7% for both compounds at serum levels occurring in patients treated with ordinary doses. Studies of analytical interference showed that the most commonly coadministered antidepressants and benzodiazepines did not interfere. Some conventional low dose neuroleptics and clozapine did interfere, but this is of minor importance, because risperidone is intended as an alternative to these drugs.  相似文献   

3.
A reversed-phase high-performance liquid chromatographic method for the determination of benflumetol in human plasma is described. Benflumetol in plasma samples was extracted with a glacial acetic acid-ethyl acetate (1:100, v/v) mixture at pH 4.0. Chromatography was performed on a Spherisorb C18 column using a methanol-water-glacial acetic acid-diethyl amine (93:6:1:0.03, v/v) mixture as the mobile phase and UV-VIS detection at 335 nm. The identity and purity of the benflumetol peak were carefully examined, and the internal standard method was applied for its quantitation. The absolute recovery of benflumetol in spiked plasma samples was 92.91% over the concentration range 5–4000 ng/ml. The recovery of internal standard “8212” at a concentration of 300 ng/ml in spiked plasma was 84.85%. The detection limit of benflumetol was 11.8 ng/ml. Plasma concentration-time profiles in healthy volunteer adults were measured after a single-dose oral administration of 500 mg of benflumetol. The assay procedures were within the quality control limits.  相似文献   

4.
KW-2170, 5-(3-aminopropyl) amino-7,10-dihydroxy-2-(2-hydroxethyl)-aminoethyl-6H-pyrazolo [4,5,1-de] acridin-6-one dihydroxychloride, is a novel anticancer agent under clinical development. We have established a highly sensitive method which can simultaneously quantitate KW-2170 and its two metabolites, a carboxylic (M1) and hydroxylated (M2) derivative involving the 5-position, in human and dog plasma. KW-2170 and its metabolites were extracted from plasma using a weak cation-exchange cartridge and then determined by HPLC using an electrochemical detector (ED). Over the concentration range 0.1-50 ng/ml, precision and accuracy of intra- and inter-day assay were within 11% in human plasma. In dog plasma, they were within 17% at the lower quantitation limit and within 11% at other concentrations. These three compounds were stable during the assay procedure, freeze-thawing cycles and during long-term storage. Using this methodology, the pharmacokinetics of KW-2170 in a dog could be monitored over 24 h. This method is suitable for evaluation of the detailed pharmacokinetics of KW-2170 and its metabolites in humans and dogs.  相似文献   

5.
For toxicological purposes, an HPLC assay was developed for the simultaneous determination of haloperidol and atypical antipsychotics (risperidone, 9-hydroxyrisperidone, olanzapine, clozapine) in human plasma. After a double-step liquid-liquid extraction, compounds were separated on a C(8) column eluted with a gradient of acetonitrile and phosphate buffer 50 mM pH 3.8. A sequential ultraviolet detection was used (260, 280 and 240 nm). Calibration curves were linear in the range 10-1000 ng/ml. The limits of quantification were 5 ng/ml for all drugs. Average accuracy at four concentrations ranged from 93 to 109%. Both inter- and intra-day variation coefficients were lower than 11% for all drugs. This simple and rapid method (run time<15 min) is currently used for poison management.  相似文献   

6.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of the new anti-psychotic risperidone and its major metabolite 9-hydroxyrisperidone in plasma, urine and animal tissues. The alkalinized plasma samples were extracted with ethyl acetate and further purified prior to reversed-phase chromatography with ultraviolet detection at 280 nm. The method could also be applied to urine samples and animal tissue homogenates. Quantification limits were 2 ng/ml for plasma and urine and 10 ng/g for animal tissue. The method was applied to pharmacokinetic studies in experimental animals, human volunteers and patients.  相似文献   

7.
A reversed-phase high-performance liquid chromatographic (HPLC) using ultraviolet (UV) absorbance detection method for simultaneous determination of clofibrate (I) and its major metabolite clofibric acid (II) in human plasma has been developed to support a clinical study. I, II and internal standard (I.S., III) are isolated from human plasma by 96-well solid-phase extraction (SPE) C(18)z.ccirf;AR plate and quantified by direct injection of the SPE eluent onto the HPLC with UV detection wavelength at 230 nm. Two chromatographic methods, isocratic and step gradient, have been validated from 1.0 to 100.0 microg/ml and successfully applied to plasma sample analysis for a clinical study. The lower limit of quantitation (LLOQ) is 1.0 microg/ml for both I and II when 500 microl plasma sample is processed. Sample collection and preparation is conducted at 5 degrees C to minimize the hydrolysis of I to II in human plasma.  相似文献   

8.
An improved high-performance liquid chromatographic method has been developed to measure human plasma concentrations of the analgesic nonsteroidal anti-inflammatory drug ketorolac for use in pharmacokinetic studies. Samples were prepared for analysis by solid-phase extraction using Bond-Elut PH columns, with nearly complete recovery of both ketorolac and the internal standard tolmetin. The two compounds were separated on a Radial-Pak C18 column using a mobile phase consisting of water–acetonitrile–1.0 mol/l dibutylamine phosphate (pH 2.5) (30:20:1) and detected at a UV wavelength of 313 nm. Using only 250 μl of plasma, the standard curve was linear from 0.05 to 10.0 μg/ml.  相似文献   

9.
A simple gradient reversed-phase high-performance chromatographic method with ultraviolet detection for the determination of fluvastatin (FV) and its five metabolites, (M-2, M-3, M-4, M-5 and M-7) in human plasma was developed and validated. The limit of quantification of FV and its five metabolites in human plasma was 10 ng ml−1. The assay had satisfactory selectivity, recovery, linearity and precision accuracy. Stability studies showed that FV and its five metabolites were stable in plasma up to at least 1 month of storage at −30°C.  相似文献   

10.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifampin in human plasma. Rifampin and sulindac (internal standard) are extracted from human plasma using a C2 Bond Elut extraction column. A 100-μl volume of 0.1 M HCl is added to the plasma before extraction to increase the retenction of the compounds on the extraction column. Methanol (1 ml) is used to elute the compounds and 0.5 ml of 3 mg/ml ascorbic acid in water is added to the final eluate to reduce the oxidation of rifampin. Separation is achieved by reversed-phase chromatography on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate-acetonitrile (55:45, v/v). Detection is by ultraviolet absorbance at 340 nm. The retention times of rifampin and internal standard are approximately 4.4 and 7.8 min, respectively. The assay is linear in concentration ranges of 50 to 35 000 ng/ml. The quantitation limit is 50 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

11.
12.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifabutin in human plasma. Rifabutin and sulindac (internal standard) are extracted from human plasma using a C8 Bond Elut extraction column. Methanol (1 ml) is used to elute the compounds. The methanol is dried down under nitrogen and reconstituted in 250 μl of mobile phase. Separation is achieved by HPLC on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate and 0.05 M sodium acetate at pH 4.0-acetonitrile (53:47, v/v). Detection is by ultraviolet absorbance at 275 nm. The retention times of rifabutin and internal standard were approximately 10.8 and 6.9 min, respectively. The assay is linear over the concentration range of 5–600 ng/ml. The quantitation limit was 5 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

13.
An isocratic reversed-phase high-performance liquid chromatographic method for the determination of amidepin has been developed. The method is based on the extraction of alkaline plasma with diethyl ether—dichloromethane, and the injection into the Supelcosil LC-18 column of the evaporated and reconstituted organic phase. After separation, detection is carried out by a fluorescence detector (excitation at 195 nm with no filter). The limit of detection is 10 ng/ml of plasma. The mean coefficient of variation is 12%. The plasma levels after oral administration and after intravenous administration are shown.  相似文献   

14.
15.
A sensitive high-performance liquid chromatographic assay has been developed to determine the levels of a new antiretroviral agent, stavudine (2′,3′-didehydro-3′-deoxythymidine, d4T), in human plasma. Didanosine (2′,3′-dideoxyinosine, ddI) was used as the internal standard. The very selective sample pretreatment involved solid-phase extraction using silica gel columns. Chromatography was carried out on a μBondapak phenyl column, using a mobile phase of 0.005 M phosphate buffer (pH 6.8)—methanol (90:10, v/v) and ultraviolet detection at 265 nm. The method has been validated, and stability tests under various conditions have been performed. The detection limit is 10 ng/ml (using 500-μl human plasma samples). The bioanalytical assay has been used in a single pharmacokinetic experiment in a rat to investigate the applicability of the method in vivo.  相似文献   

16.
An isocratic high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of clozapine (8-chloro-11-(4′-methyl)piperazino-5H-dibenzo[b,e]-1,4-diazepine) and its two major metabolites in plasma and red blood cells (RBCs). The method involves sample clean-up by liquid-liquid extraction with ethyl acetate. The organic phase was back-extracted with 0.1 M hydrochloric acid. Loxapine served as the internal standard. The analytes were separated by HPLC on a Kromasil Ultrabas C18 analytical column (5 μm particle size; 250×4.6 mm I.D.) using acetonitrile-phosphate buffer pH 7.0 (48:52, v/v) as eluent and were measured by UV absorbance detection at 254 nm. The limits of quantification were 20 ng/ml for clozapine and N-desmethylclozapine and 30 ng/ml for clozapine N-oxide. Recovery from plasma or RBCs proved to be higher than 62%. Precision, expressed as % C.V., was in the range 0.6–15%. Accuracy ranged from 96 to 105%. The method's ability to quantify clozapine and two major metabolites simultaneously with precision, accuracy and sensitivity makes it useful in therapeutic drug monitoring.  相似文献   

17.
A method for the determination of 25-hydroxyvitamin D3, the major metabolite of vitamin D3 in human plasma, using a non-radioactive internal standard and reversed-phase high-performance liquid chromatography with UV detection (265 nm) has been developed. The method was applied to the determination of the metabolite in plasma from healthy subjects (n=25) and from patients with chronic renal failure (n=12). 25-Hydroxyvitamin D3 3-sulfate, a major conjugated metabolite of 25-hyroxyvitamin D3, was also determined and the correlation between the concentrations of these metabolites was examined. The study showed that almost equal amounts of both compounds were detected in the plasma of healthy subjects, however, in two subjects, the amount of sulfate in the free form was found to be about twice as high as normally detected. In contrast, the free form was predominant in the plasma of patients with chronic renal failure and the sulfate was not detected in four patients.  相似文献   

18.
An isocratic high-performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous determination of clozapine and its two major metabolites in human plasma is described. Analytes are concentrated from alkaline plasma by liquid–liquid extraction with n-hexane–isoamyl alcohol (75:25, v/v). The organic phase is back-extracted with 150 μl of 0.1 M dibasic phosphate (pH 2.2 with 25% H3PO4). Triprolidine is used as internal standard. For the chromatographic separation the mobile phase consisted of acetonitrile–0.06 M phosphate buffer, pH 2.7 with 25% phosphoric acid (48:52, v/v). Analytes are eluted at a flow-rate of 1.0 ml/min, separated on a 250×4.60 mm I.D. analytical column packed with 5 μm C6 silica particles, and measured by UV absorbance detection at 254 nm. The separation requires 7 min. Calibration curves for the three analytes are linear within the clinical concentration range. Mean recoveries were 92.7% for clozapine, 82.0% for desmethylclozapine and 70.4% for clozapine N-oxide. C.V. values for intra- and inter-day variabilities were ≤13.8% at concentrations between 50 and 1000 ng/ml. Accuracy, expressed as percentage error, ranged from −19.8 to 2.8%. The method was specific and sensitive with quantitation limits of 2 ng/ml for both clozapine and desmethylclozapine and 5 ng/ml for clozapine N-oxide. Among various psychotropic drugs and their metabolites, only 2-hydroxydesipramine caused significant interference. The method is applicable to pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

19.
Sensitive high-performance liquid chromatographic assays have been develope to determine the levels of the lactone and lactone plus carboxylate (total) forms of the antitumor agent irinotecan (CPT-11) and its active metabolite SN-38, in human plasma. The related compound camptothecin was used as the internal standard. The selective sample pretreatment for the lactone forms involved a single solvent extraction with acetonitrile-n-butyl chloride (1:4,v/v), whereas the sample clean-up for the total forms was a simple protein precipitation with aqueous perchloric acid-methanol (1:1, v/v), which results in the conversion of the carboxylate to the lactone forms. Chromatography was carried out on a Hypersil ODS column, with detection performed fluorimetrically. The methods have been validated, and stability tests under various conditions have been performed. The lower limits of quantitation are 0.5 and 2.0 ng/ml for the lactone and total forms, respectively. The assays have been used in a single pharmacokinetic experiment in a patient to investigate the applicability of the method in vivo.  相似文献   

20.
A simple and sensitive isocratic high-performance liquid chromatographic (HPLC) method with UV detection for the quantitation of perillic acid, a major circulating metabolite of perillyl alcohol and d-limonene, in plasma is described. Sample preparation involved protein precipitation and subsequent transfer and dilution with 10 mM NaHCO3. The mobile phase consisted of acetonitrile (36%) and 0.05 M ammonium acetate buffer pH 5.0 (64%). Separations were achieved on a C18 column and the effluent monitored for UV absorption at the analytes' respective UVmax. Separation was excellent with no interference from endogenous plasma constituents. This method was found suitable for quantifying drug concentrations in the range of 0.25 to 200.0 μg/ml using a 0.05-ml plasma sample, and was used to study the plasma pharmacokinetics of perillic acid in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号