首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An HPLC assay with tandem mass spectrometric detection in the positive-ion Turbo-Ion-Spray (TISP) mode for the fast and sensitive determination of perifosine ((I), D-21266) in human plasma was developed, utilising the structural analogue, miltefosine ((II), D-18506), as internal standard. Automated solid-phase extraction of diluted plasma samples, based on 250-μl plasma aliquots, at pH 6.5, allowed a reliable quantification of perifosine down to 4 ng/ml. Injection of 200 μl of plasma extracts onto a 100×3 mm normal-phase analytical column at a flow-rate of 0.5 ml/min provided retention-times of 2.4 and 2.1 min for perifosine (I) and the internal standard (II), respectively. The standard curves were linear from 4 to 2000 ng/ml using weighted linear regression analysis (1/Y2). The inter-assay and intra-assay accuracies for the calibration standards were within +0.9% and −0.2%, exhibiting precisions (C.V.) of ±6.5 and ±7.3%, respectively. Up to 100 unknowns may be analysed each 24 h per analyst.  相似文献   

2.
Methods for the determination of a semi-synthetic cyclic hexapeptide (I, MK-0991) in human plasma based on high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS–MS) detection using pneumatically assisted electrospray (ion spray, ISP) and turbo ion spray (TISP) interfaces were developed. Drug and internal standard (II, an isostere of I) were isolated from plasma by solid-phase extraction (SPE). The eluent from SPE was evaporated to dryness, the residue was reconstituted in mobile phase and injected into the HPLC system. The use of ISP, TISP and heated nebulizer (HN) interfaces as sample introduction systems were evaluated and showed that the heated nebulizer was not adequate for analysis due to thermal instability and/or adsorption of I and II to glass surfaces of the interface. Compounds I and II were chromatographed on a wide pore (300 Å), 150×4.6 mm C8 analytical column, and the HPLC flow-rate of 1.2 ml/min was split 1:20 prior to introduction to the ISP or TISP interface of the mass spectrometric system. The MS–MS detection was performed on a PE Sciex API III Plus tandem mass spectrometer operated in selected reaction monitoring mode (SRM). The precursor→product ion combinations of m/z 1093.7→1033.6 and 1094.7→1033.6 were used to quantify I and II, respectively, after chromatographic separation of the analytes. The assay was validated in the concentration range of 10–1000 ng/ml using ISP, and 2.5–500 ng/ml of plasma using TISP with good precision and adequate accuracy. The effects of HPLC mobile-phase components on the ionization efficiency and sensitivity of detection in the positive ionization mode, the evaluation of the matrix effect, and limitations in sensitivity of detection of I due to the formation of multiply charged species are presented.  相似文献   

3.
A chromatographic method was developed to detect and confirm the presence of chlorpropamide (I) in horse plasma samples, for antidoping control. The plasma sample (1 ml) was extracted with dichloromethane and screened by high-performance liquid chromatography, and confirmation of the drug's presence was accomplished by using gas chromatography–mass spectrometry (GC–MS). The limit of detection was found to be 3.5 ng/ml at a signal-to-noise ratio of three. Derivatization of I with N,O-bis-(trimethylsilyl)trifluoroacetamide with 1% trimethylchlorosilane allowed for highly stable, accurate and sensitive GC–MS analysis. Plasma samples collected after the administration of diabinese were positive for I (one–five days) in all samples analysed.  相似文献   

4.
CPT-11 {I; 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin} is a new anticancer agent currently under clinical development. A sensitive high-performance liquid chromatographic assay suitable for the simultaneous determination of I and its active metabolite SN-38 (II) in human plasma, and their preliminary clinical pharmacokinetics, are described. Plasma samples were processed using a solid-phase (C18) extraction step allowing mean recoveries of I, II and the internal standard camptothecin (III) of 84, 99 and 72%, respectively. The extracts were chromatographed on a C18 reversed-phase column with a mobile phase composed of acetonitrile, phosphate buffer and heptanesulphonic acid, with fluorescence detection. The calibration graphs were linear over a wide range of concentrations (1 ng/ml–10 μg/ml), and the lower limit of determination was 1 ng/ml for both I and II. The method showed good precision: the within-day relative standard deviation (R.S.D.) (5–1000 ng/ml) was 13.0% (range 4.9–19.4%) for I and 12.8% (6.7–19.1%) for II; the between-day R.S.D. (5–10 000 ng/ml was 7.9% (5.4–17.5%) for I and 9.7% (3.5–15.1%) for II. Using this assay, plasma pharmacokinetics of both I and II were simultaneously determined in three patients receiving 100 mg/m2 I as a 30-min intravenous infusion. The mean peak plasma concentration of I at the end of the intravenous infusion was 2400 ± 285 ng/ml (mean ± standard error of the mean). Plasma decay was triphasic with half-lives α, β and γ of 5.4 ± 1.8 min, 2.5 ± 0.5 h and 20.2 ± 4.6 h, respectively. The volume of distribution at steady state was 105 ± 15 l/m2, and the total body clearance was 12.5 ± 1.9 l/h · m2. The maximum concentrations of the active metabolite II reached 36 ± 11 ng/ml.  相似文献   

5.
A sensitive and specific assay of human plasma for the determination of (5α,7β,16β)-16[(4-chlorophenyl)oxy]-4,7-dimethyl-4-aza-andronstan-3-one (I), a selective inhibitor of human type 1 5α-reductase, has been developed. The method is based on high-performance liquid chromatography (HPLC) with tandem mass spectrometric (MS–MS) detection. The analyte (I) and internal standard, Proscar (II), were isolated from the basified biological matrix using a liquid–liquid extraction with methyl-tert.-butyl ether (MTBE). The organic extract was evaporated to dryness, the residue was reconstituted in mobile phase and injected into the HPLC system. The MS–MS detection was performed on a PE Sciex API III Plus tandem mass spectrometer using a heated nebulizer interface. Multiple reaction monitoring using the precursor→product ion combinations of m/z 430→114 and 373→305 was used to quantify I and internal standard (II), respectively. The assay was validated in the concentration range of 0.5 to 500 ng/ml in human plasma. The precision of the assay, expressed as coefficient of variation (C.V.), was less than 7% over the entire concentration range, with adequate assay specificity and accuracy. The HPLC–MS–MS method provided sufficient sensitivity to completely map the 24 h pharmacokinetic time-course following a single 0.5 mg dose of I.  相似文献   

6.
A sensitive reversed-phase high-performance liquid chromatographic method has been developed and validated for the quantitative determination of docetaxel (I) in human plasma. The concentrations in plasma, for validation procedures spiked with known amounts of I, are read from calibration curves in the range of 10–20 000 ng/ml. The sample preparation involved a liquid–liquid extraction of 1000 μl of sample with a mixture of acetonitrile–n-butylchloride (1:4, v/v). The related compound paclitaxel (II) was used as internal standard. Chromatographic separations were performed an Inertsil ODS-80A column, with UV detection performed at 230 nm. The overall extraction recoveries were 84.3 and 90.0% for I and II, respectively. The lower limit of quantitation was 10 ng/ml, and the accuracy, within-run and between-run precisions at three tested concentrations fell within the generally accepted criteria for bioanalytical assays.  相似文献   

7.
A simple, sensitive and specific liquid chromatography–electrospray tandem mass spectrometry (LC–MS–MS) method for the determination of clindamycin (I) was developed. Both I and verapamil (II, internal standard) were analyzed using a C18 column with a mobile phase of 80% acetonitrile–0.01% trifluoroacetic acid. Column eluents were monitored by electrospray tandem mass spectrometry. Multiple reaction monitoring (MRM) using the parent to daughter combinations of m/z 425→126 and 455→165 was used to quantitate I. A limit of quantitation of 0.0500 μg/ml was found. The assay exhibited a linear dynamic range of 0.0500–20.0 μg/ml and gave a correlation coefficient (r2) of 0.998 or better. The chromatographic run time was approximately 2 min. The intra-batch precision and accuracy of the quality controls (QCs, 0.0500, 0.150, 1.50, 15.0 and 20.0 μg/ml) were characterized by coefficients of variation (CVs) of 5.13 to 13.7% and relative errors (REs) of −4.34 to 4.58%, respectively. The inter-batch precision and accuracy of the QCs were characterized by CVs of 4.35 to 8.32% and REs of −10.8 to −4.17%, respectively. The method has successfully been applied to the analysis of samples taken up to 12 h after oral administration of 300 mg of I in healthy volunteers.  相似文献   

8.
A sensitive, robust gas chromatographic–mass spectrometric assay suitable for use in pharmacokinetic or bioequivalence studies is presented for the selective serotonin reuptake inhibitor, fluoxetine, and its major metabolite, norfluoxetine (N-desmethylfluoxetine). This method employs solid-phase extraction followed by acetylation with trifluoroacetic anhydride and analysis of the derivatives using selected ion monitoring. The lower limit of quantification was 1.0 ng/ml, and the assay was linear for both analytes from 1 to 100 ng/ml. Mean recoveries following solid-phase extraction at concentrations of 5.0, 20 and 100 ng/ml were 91% (fluoxetine) and 87% (norfluoxetine). Assay precision (as mean RSD) and accuracy (as mean relative error) for both analytes were tested at the same three nominal concentrations and were found to be within 10% in all cases. Analysis of fluoxetine concentrations in plasma samples from 18 volunteers following administration of a single 40 mg dose of fluoxetine provided the following pharmacokinetic data (mean±SD): Cmax, 32.73±9.21 ng/ml; AUC0–∞, 1627±1372 ng/ml h; Tmax, 3.08 h (median); ke, 0.022±0.007 h−1; elimination half-life, 37.69±21.70 h.  相似文献   

9.
A sensitive, selective, and reproducible GC–MS–SIM method was developed for determination of artemether (ARM) and dihydroartemisinin (DHA) in plasma using artemisinin (ART) as internal standard. Solid phase extraction was performed using C18 Bond Elut cartridges. The analysis was carried out using a HP-5MS 5% phenylmethylsiloxane capillary column. The recoveries of ARM, DHA and ART were 94.9±1.6%, 92.2±4.1% and 81.3±1.2%, respectively. The limit of quantification in plasma was 5 ng/ml (C.V.≤17.4% for ARM and 15.2% for DHA). Calibration curves were linear with R2≥0.988. Within day coefficients of variation were 3–10.4% for ARM and 7.7–14.5% for DHA. Between day coefficients of variations were 6.5–15.4% and 7.6–14.1% for ARM and DHA. The method is currently being used for pharmacokinetic studies. Preliminary data on pharmacokinetics showed Cmax of 245.2 and 35.6 ng/ml reached at 2 and 3 h and AUC0–8h of 2463.6 and 111.8 ngh/ml for ARM and DHA, respectively.  相似文献   

10.
A gas chromatography–electron capture mass spectrometry assay has been developed for the histamine H3 receptor agonist, Nα-methylhistamine (Nα-MH). The assay is linear from 50 pg–10 ng, with a limit of detection of 50 pg/ml for gastric juice and plasma, and 50 pg/sample for bacteria (107–108 CFU) and gastric tissue (5–10 mg wet weight). The limits of quantification are 100 pg/ml for gastric juice (%RSD=1.4) and plasma (%RSD=9.4), and 100 pg/sample for bacteria (%RSD=3.9) and tissue (%RSD=5.8). Nα-MH was not present in human plasma, but low levels (1.4 ng/ml and 0.4 ng/ml) were detected in two samples of human gastric juice obtained from patients infected with Helicobacter pylori.  相似文献   

11.
Compound I, 5-chloro-3-(4-methanesulfonylphenyl)-6′-methyl-[2,3′]bipyridinyl, has been found to be a specific inhibitor of the enzyme cyclooxygenase II (COX II). The anti-inflammatory properties of this compound are currently being investigated. HPLC assays for the determination of this analyte in human plasma and human urine have been developed. Isolation of I and the internal standard (II) was achieved by solid-phase extraction (SPE) in the 96-well format. A C8 SPE plate was used for the extraction of the drug from human plasma (recovery >90%) while a mixed-mode (C8/Cation) SPE plate was used to isolate the analytes from human urine (recovery approximately 71%). The analyte and internal standard were chromatographed on a Keystone Scientific Prism-RP® guard column (20×4.6 mm) connected to a Prism-RP® analytical column (150×4.6 mm), using a mobile phase consisting of 45% acetonitrile in 10 mM acetate buffer (pH=4); the analytes eluted at retention times of 5.2 and 6.9 min for I and II, respectively. Compounds I and II were found to form highly fluorescent products after exposure to UV light (254 nm). Thus, the analytes were detected by fluorescence (λex=260 nm, λem=375 nm) following post-column photochemical derivatization. Eight point calibration curves over the concentration range of 5–500 ng/ml for human plasma and human urine yielded a linear response (R2>0.99) when a 1/y weighted linear regression model was employed. Based on the replicate analyses (n=5) of spiked standards, the within-day precision for both assays was better than 7% C.V. at all points on the calibration curve; within-day accuracy was within 5% of nominal at all standard concentrations. The between-run precision and accuracy of the assays, as calculated from the results of the analysis of quality control samples, was better than 8% C.V. and within 8% of nominal. I was found to be stable in human plasma and urine for at least 8 and 2 months, respectively. In addition, the human plasma assay was semi-automated in order to improve sample throughput by utilizing a Packard liquid handling system and a Tom-Tec Quadra 96 SPE system. The precision and accuracy of the semi-automated procedure were comparable to the manual procedure. Over 5000 clinical samples have been analyzed successfully using these methods.  相似文献   

12.
Enhanced expression of transforming growth factor-β1(TGF-β1) demonstrated in human colonic mucosa of patients with ulcerative colitis (UC), indicates its possible significance in the pathogenesis of this disease. The aim of this study was to evaluate plasma TGF-β1concentration in patients with different degrees of colonic mucosal injury, as a possible indicator of ulcerative colitis activity. TGF-β1concentration was measured with an enzyme immunoassay (EIA) in plasma of 45 patients with endoscopically confirmed UC. Values observed in UC patients (40.5±15.9 ng/ml) were significantly higher than in healthy people (18.3±11.6 ng/ml) and higher than in patients with irritable colon syndrome (ICS), (20.5±13.6 ng/ml). The highest plasma TGF-β1(58.6±112.1 ng/ml) was in patients with the severe UC course. TGF-β1level analysed in all UC patients revealed significant positive correlation with scored degree of mucosal injury (r=0.396;P<0.01). Among other possible laboratory markers of the disease activity, only C-reactive protein concentration demonstrated significant correlation. Enhanced production of TGF-β1can be related to inflammation activity. Measurement of plasma TGF-β1may be considered as a biomarker of the disease activity.  相似文献   

13.
A sensitive and specific analytical method for a potent antitumor agent, TZT-1027, in plasma has been developed using liquid chromatography–mass spectrometry (LC–MS) with [2H4]TZT-1027 as an internal standard (I.S.). A plasma sample was purified by solid-phase extraction on a C18 cartridge, followed by solvent extraction with diethyl ether. The extract was then injected into the LC–MS system. Chromatography was carried out on a C18 reversed-phase column using acetonitrile–0.05% trifluoroacetic acid (TFA) (55:45) as a mobile phase. Mass spectrometric analysis was performed in atmospheric pressure chemical ionization (APCI) mode with positive ion detection, and the protonated molecular ions ([M+H]+) of TZT-1027 and I.S. were monitored to allow quantitation. The method was applied to the determination of TZT-1027 in human, monkey, dog, rat and mouse plasma. As far as the sample preparation was concerned, good recoveries (73.5–99.1%) were obtained. The calibration curves were linear over the range of 0.25–100 ng per 1 ml of human, dog and rat plasma, per 0.5 ml of monkey plasma, and per 0.1 ml of mouse plasma. From the intra- and inter-day accuracy and precision, the present method satisfies the accepted criteria for bioanalytical method validation. TZT-1027 was stable when stored below −15°C for 6 months in human plasma and for 3 weeks in plasma from other species. TZT-1027 was also stable in plasma through at least three freeze–thaw cycles.  相似文献   

14.
Tamoxifen (TAM) is a triphenylethylene anti-oestrogen, commonly used in the treatment of breast cancer. Patients receiving tamoxifen therapy may experience both de novo and acquired resistance. As one of the mechanisms for this may be extensive peripheral bio-transformation of tamoxifen, there has been considerable interest in the pharmacokinetics and metabolism of tamoxifen. A reversed-phase high-performance liquid chromatography separation has been developed to determine the levels of tamoxifen and its major metabolites in human plasma. The method is highly sensitive (2 ng/ml) and selective for tamoxifen, cis-tamoxifen (CIS), 4-hydroxytamoxifen (4-OH) and desmethyltamoxifen (DMT). A μBondapak C18 10 μm column (30 cm × 3.9 mm I.D.) was used, with a mobile phase of methanol-1% triethylamine at pH 8 (89:11, v/v). Sample preparation was carried out using a C2 (500 mg sorbent, 3 ml reservoirs) solid phase extraction method, and extraction efficiencies were approximately 60% for TAM and its metabolites. Accuracy and precision, as determined by spiking plasma samples with a mixture of tamoxifen and its metabolites, ranged from 85–110% (± 5–10%) at 1 μg/ml, 101–118% (± 8–20%) at 0.1 μg/ml and 111–168% (± 43–63%) at 0.01 μg/ml. Results from 59 patients show mean values of 54 ng/ml for 4-OH; 190 ng/ml for DMT; 93 ng/ml for TAM and 30 ng/ml for CIS (detected in three patients only). This methodology can be applied routinely to the determination of TAM and its metabolites in plasma from patients undergoing therapy.  相似文献   

15.
The four stereoisomers of the combined α- and β-adrenoceptor antagonist labetalol were separated and quantified at therapeutic concentrations by normal-phase high-pressure liquid chromatography using a chiral stationary phase and fluorescence detection. Drug in plasma or urine was recovered by solid-phase extraction with 83±5% efficiency. Limits of detection from biological samples (3 ml) were between 1.5–1.8 ng ml−1. Intra-day and inter-day variation at 25 ng ml−1 were ≤2.7% and ≤5.80% respectively for all stereoisomers. The assay was applied to an examination of the disposition of labetalol stereoisomers after a single oral dose of racemate to a human volunteer. Labetalol appears to undergo enantioselective metabolism leading to relatively low plasma concentrations of the pharmacologically active enantiomers.  相似文献   

16.
A rapid, selective and sensitive HPLC–tandem mass spectrometry method was developed and validated for simultaneous determination of flupirtine and its active metabolite D-13223 in human plasma. The analytes and internal standard diphenhydramine were extracted from plasma samples by liquid–liquid extraction, and chromatographed on a C18 column. The mobile phase consisted of acetonitrile–water–formic acid (60:40:1, v/v/v), at a flow rate of 0.5 ml/min. Detection was performed on a triple quadrupole tandem mass spectrometer by selected reaction monitoring (SRM) mode via atmospheric pressure chemical ionization (APCI). The method has a limit of quantitation of 10 ng/ml for flupirtine and 2 ng/ml for D-13223, using 0.5-ml plasma sample. The linear calibration curves were obtained in the concentration range of 10.0–1500.0 ng/ml for flupirtine and 2.0–300.0 ng/ml for D-13223. The intra- and inter-run precision (RSD), calculated from quality control (QC) samples was less than 7.2% for flupirtine and D-13223. The accuracy as determined from QC samples was less than 5% for the analytes. The overall extraction recoveries of flupirtine and D-13223 were determined to be about 66% and 78% on average, respectively. The method was applied for the evaluation of the pharmacokinetics of flupirtine and active metabolite D-13223 in volunteers following peroral administration.  相似文献   

17.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

18.
Methods for the determination of celecoxib in human plasma and rat microdialysis samples using liquid chromatography tandem mass spectrometry are described. Celecoxib and an internal standard were extracted from plasma by solid-phase extraction with C18 cartridges. Thereafter compounds were separated on a short narrow bore RP C18 column (30×2 mm). Microdialysis samples did not require extraction and were injected directly using a narrow bore RP C18 column (70×2 mm). The detection was by a PE Sciex API 3000 mass spectrometer equipped with a turbo ion spray interface. The compounds were detected in the negative ion mode using the mass transitions m/z 380→316 and m/z 366→302 for celecoxib and internal standard, respectively. The assay was validated for human plasma over a concentration range of 0.25–250 ng/ml using 0.2 ml of sample. The assay for microdialysis samples (50 μl) was validated over a concentration range of 0.5–20 ng/ml. The method was utilised to determine pharmacokinetics of celecoxib in human plasma and in rat spinal cord perfusate.  相似文献   

19.
A high-performance liquid chromatography (HPLC) method is described for the measurement of the weak alkylating agent CB1954 in human plasma. CB1954 can be used as an innocuous prodrug designed for activation by bacterial nitroreductases in strategies of gene-directed enzyme–prodrug therapy, and becomes activated to a potent bifunctional alkylating agent. The HPLC method involves precipitation and solvent extraction and uses Mitomycin C (MMC) as an internal standard, with a retention time for MMC of 5.85±0.015 min, and for CB1954 of 10.72±0.063 min. The limit of detection for CB1954 is 2.9 ng/ml, and this compares favourably with systems involving direct analysis of plasma (limit of detection 600 ng/ml, approximately). The method is now being used for pharmacokinetic measurements in plasma samples from cancer patients entering phase I clinical trials of CB1954. Results using serial plasma samples from one patient are presented. The patient was treated intravenously with CB1954 (6 mg/m2), and plasma clearance of the drug showed biphasic kinetics with α half-life 14.6 min, and β half-life 170.5 min.  相似文献   

20.
Celecoxib is a cyclooxygenase-2 specific inhibitor, that has been recently and intensively prescribed as an anti-inflammatory drug in rheumatic osteoarthiritis. A robust, highly reliable and reproducible liquid chromatographic–mass spectrometric assay is developed for the determination of celecoxib in human plasma using sulindac as an internal standard. The run cycle-time is <4 min. The assay method involved extraction of the analytes from plasma samples at pH 5 with ethyl acetate and evaporation of the organic layer. The reconstituted solution of the residue was injected onto a Shim Pack GLC-CN, C18 column and chromatographed with a mobile phase comprised of acetonitrile–1% acetic acid solution (4:1) at a flow-rate of 1 ml/min. The mass spectrometer (LCQ Finnigan Mat) was programmed in the positive single-ion monitoring mode to permit the detection and quantitation of the molecular ions of celecoxib and sulindac at m/z 382 and 357, respectively. The peak area ratio of celecoxib/sulindac and concentration are linear (r2>0.994) over the concentration range 50–1000 ng/ml with a lowest detection limit of 20 ng/ml of celecoxib. Within- and between-day precision are within 1.58–4.0% relative standard deviation and the accuracy is 99.4–107.3% deviation of the nominal concentrations. The relative recoveries of celecoxib from human plasma ranged from 102.4 to 103.3% indicating the suitability of the method for the extraction of celecoxib and I.S. from plasma samples. The validated LC–MS method has been utilized to establish various pharmacokinetic parameters of celecoxib following a single oral dose administration of celecoxib capsules in two selected volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号