首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the quantification of nitrite and nitrate, the stable metabolites of -arginine-derived nitric oxide (NO) in human urine and plasma, we developed a gas chromatographic—mass spectrometric (GC—MS) method in which [15N]nitrite and [15N]nitrate were used as internal standards. Endogenous nitrite and [15N]nitrite added to acetone-treated plasma and urine samples were converted into their pentafluorobenzyl (PFB) derivatives using PFB bromide as the alkylating agent. For the analysis of endogenous nitrate and [15N]nitrate they were reduced to nitrite and [15N]nitrite, respectively, by cadmium in acidified plasma and urine samples prior to PFB alkylation. Reaction products were extracted with toluene and 1-μl aliquots were analyzed by selected-ion monitoring at m/z 46 for endogenous nitrite (nitrate) and m/z 47 for [15N]nitrite ([15N]nitrate). The intra- and inter-assay relative standard deviations for the determination of nitrite and nitrate in urine and plasma were below 3.8%. The detection limit of the method was 22 fmol of nitrite. Healthy subjects (n = 12) excreted into urine 0.49 ± 0.25 of nitrite and 109.5 ± 61.7 of nitrate (mean ± S.D., μmol/mmol creatinine) with a mean 24-h output of 5.7 μmol for nitrite and 1226 μmol for nitrate. The concentrations of nitrite and nitrate in the plasma of these volunteers were determined to be (mean ± S.D., μmol/l) 3.6 ± 0.8 and 68 ± 17, respectively.  相似文献   

2.
A GC method using a novel derivatization reagent, 2′,2′,2-trifluoroethyl chloroformate (TFECF), for the derivatization of primary and secondary aliphatic amines with the formation of carbamate esters is presented. The method is based on a derivatization procedure in a two-phase system, where the carbamate ester is formed. The method is applied to the determination of 1,6-hexamethylene diamine (HDA) in aqueous solutions and human urine, using capillary GC. Detection was performed using thermionic specific detection (TSD) and mass spectrometry (MS)—selective-ion monitoring (SIM) using electron-impact (EI) and chemical ionization (CI) with ammonia monitoring both positive (CI)+ and negative ions (CI). Quantitative measurements were made in the chemical ionization mode monitoring both positive and negative ions. Tetra-deuterium-labelled HDA (TDHDA; H2NC2H2(CH2)4C2H2NH2) was used as the internal standard for the GC—MS analysis. In CI+ the m/z 386 and the m/z 390 ions corresponding to the [M + 18]+ ions (M = molecular ion) of HDA—TFECF and TDHDA—TFECF were measured; in CI the m/z 267 and the m/z 271 ions corresponding to the [M — 101] ions. The overall recovery was found to be 97 ± 5% for a HDA concentration of 1000 μg/l in urine. The minimal detectable concentration in urine was found to be less than 20 μg/l using GC—TSD and 0.5 μg/l using GC—SIM. The overall precision for the work-up procedure and GC analysis was ca. 3% (n = 5) for 1000 μg/l HDA-spiked urine, and ca. 4% (n = 5) for 100 μg/l. The precision using GC—SIM for urine samples spiked to a concentration of 5 μg/l was found to be 6.3% (n = 10).  相似文献   

3.
Nitrite and nitrate levels in physiological fluids are commonly used as an index of nitric oxide production. We developed simple and rapid method for the determination of these anions by capillary zone electrophoresis employing borate buffer (pH 10, 100 mmol/l) as running electrolyte. The anions were analyzed in plasma and cerebrospinal fluid (CSF) without deproteinization of the samples. Electrophoresis was carried out in a capillary (36.5 cm×75 μm) at a potential of 15 kV, with on-column UV detection at 214 nm. Mean retention times for nitrite and nitrates were 4.631 and 5.152 min, respectively. The method was linear (r=0.999) within a 1–500 μmol/l concentration range. Physiological levels of nitrate in plasma (40.2 μmol/l) and CSF (15.3 μmol/l) could be determined with good precision (coefficients of variation <6%) and accuracy (recoveries of added nitrate to plasma and CSF were 97.4 and 104.5%, respectively). Measurements of the physiological levels of nitrite in plasma (6.1 μmol/l) and CSF (0.9 μmol/l) were less precise and accurate.  相似文献   

4.
We developed a simple capillary electrophoresis (CE) method to measure nitrite and nitrate concentrations in sub-microliter samples of rat airway surface liquid (ASL), a thin (10–30 μm) layer of liquid covering the epithelial cells lining the airways of the lung. The composition of ASL has been poorly defined, in large part because of the small sample volume (1–3 μl per cm2 of epithelium) and difficulty of harvesting ASL. We have used capillary tubes for ASL sample collection, with microanalysis by CE using a 50 mM phosphate buffer (pH 3), with 0.5 mM spermine as a dynamic flow modifier, and direct UV detection at 214 nm. The limit of detections (LODs), under conditions used, for ASL analysis were 10 μM for nitrate and 30 μM for nitrite (S/N=3). Nitrate and nitrite were also measured in rat plasma. The concentration of nitrate was 102±12 μM in rat ASL and 70±1.0 μM in rat plasma, whereas nitrite was 83±28 μM in rat ASL and below the LOD in rat plasma. After instilling lipopolysaccharide intratracheally to induce increased NO production, the nitrate concentration in ASL increased to 387±16 μM, and to 377±88 μM in plasma. The concentration of nitrite increased to 103±7.0 μM for ASL and 138±17 μM for plasma.  相似文献   

5.
A high-performance liquid chromatographic (HPLC) assay has been developed for the determination of the antifungal drug fluconazole in saliva and plasma of patients infected with the human immunodeficiency virus (HIV). Samples can be heated at 60°C for 30 min to inactivate the virus without loss of the analyte. The sample pretreatment involves a liquid-liquid extraction with chloroform-1-propanol (4:1, v/v). The chromatographic analysis is performed on a Lichrosorb RP-18 (5 μm) column by isocratic elution with a mobile phase of 0.01 M acetate buffer (pH 5.0)-methanol (70:30, v/v) and ultraviolet (UV) detection at 261 nm. The lower limit of is 100 ng/ml in plasma (using 500-μl samples) and 1 μg/ml in saliva (using 250-μl samples) and the method is linear up to 100 μg/ml in plasma and saliva. At a concentration of 5 μg/ml the within-day and between-day precision in plasma are 7.1 and 5.7%, respectively. In saliva the within-day and between-day precision is 10.8% (at 5 μg/ml). The methodology is now being used in pharmacokinetic studies in HIV-infected patients in our hospital.  相似文献   

6.
All photometric or HPLC methods described to date have been unable to detect nitrite, a reliable marker of NO synthase activity, in human blood because of its rapid metabolism within the erythrocytes. We now elaborate on method to prevent nitrite degradation during sample preparation which in combination with high-performance anion-exchange chromatography and electrochemical detection allows a sensitive measurement of nitrite. A linear current response in the concentration range of 10–1000 nmol/l nitrite was observed yielding a correlation coefficient of 0.99. In addition, the combination of the electrochemical with a UV detector allowed us to simultaneously quantify nitrate one analytical run, which is the end product of NO/nitrite metabolism. Basal levels for nitrate and nitrite in human blood were determined with 25±4 μmol/l and 578±116 nmol/l (n=8), respectively and thus were in the same concentration range as expected from NO measurement in saline perfused isolated organs or cultured endothelial cells. Therefore, the presented method may be used to assess activity of endothelial constitutive NO synthase in humans under physiological and pathophysiological conditions.  相似文献   

7.
A rapid and sensitive method was developed for the simultaneous determination of the new doxorubicin glucuronide prodrug HMR 1826, the parent drug doxorubicin and its metabolites in human lung tissue samples. Homogenization of frozen tissue samples with the micro-dismembrator was followed by a silver nitrate precipitation step. By removing the exceeding silver ions with sodium chloride further purification steps could be omitted. Compounds were separated by isocratic high-performance liquid chromatography on a LiChrospher 100 RP18 column and a mobile phase consisting of citric acid buffer–acetonitrile–methanol–tetrahydrofuran within 30 min and quantified with fluorescence detection. The method showed good recoveries for all compounds (86–99%) and a linear calibration range of 20 ng/g–80 μg/g for doxorubicin and 1–600 μg/g for HMR 1826.  相似文献   

8.
A new high-performance liquid chromatograhic procedure for simultaneous determination of pyrazinamide (PZA) and its three metabolites 5-hydroxypyrazinamide (5-OH-PZA), pyrazinoic acid (PA), and 5-hydroxypyrazinoic acid (5-OH-PA), in rat urine was developed. 5-OH-PZA and 5-OH-PA standards were obtained by enzymatic synthesis (xanthine oxidase) and checked by HPLC and GC–MS. Chromatographic separation was achieved in 0.01 M KH2PO4 (pH 5.2), circulating at 0.9 ml/min, on a C18 silica column, at 22°C. The limits of detection were 300 μg/l for PZA, 125 μg/l for PA, 90 μg/l for 5-OH-PZA and 70 μg/l for 5-OH-PA. Good linearity (r2>0.99) was observed within the calibration ranges studied: 0.375–7.50 mg/l for PZA, 0.416–3.33 mg/l for PA, 0.830–6.64 mg/l for 5-OH-PZA and 2.83–22.6 mg/l for 5-OHPA. Accuracy was always lower than ±10.8%. Precision was in the range 0.33–5.7%. The method will constitute a useful tool for studies on the influence of drug interactions in tuberculosis treatment.  相似文献   

9.
A method was developed for the determination in human urine of S-phenylmercapturic (PMA) and S-benzylmercapturic (BMA) acids, metabolites respectively of benzene and toluene. PMA and BMA were determined, after alkaline hydrolysis, to give respectively thiophenol and benzylmercaptan, and coupling of the thiol-containing compounds with monobromobimane (MB), by reversed-phase HPLC on a diphenyl-silica bonded cartridge (100×4.6 mm I.D., 5 μm particle size) with fluorimetric detection. Wavelengths for excitation and emission were 375 and 480 nm, respectively. The recovery of PMA and BMA from spiked urines was >90% in the 10–500 μg/l range; the quantification limits were respectively 1 and 0.5 μg/l; day-to-day precision at 42 μg/l was C.V. <7%. The suitability of the proposed procedure for the biological monitoring of exposure to low-level airborne concentrations of benzene and toluene, was evaluated by analyzing the urinary excretion of PMA and BMA in subjects exposed to different sources of aromatic hydrocarbons, namely occupationally-unexposed referents (non-smokers, n=15; moderate smokers, n=8; mean number of cigarettes smoked PER-DAY=17 cig/day) and non-smoker workers occupationally exposed to toluene in maintenance operations of rotogravure machines (non-smokers, n=17). Among referents, non-smokers showed values of PMA ranging from <1 to 4.6 μg/l and BMA from 1.0 to 10.4 μg/l; in smokers, PMA values ranging from 1.2 to 6.7 μg/l and BMA from 9.3 to 39.9 μg/l, were observed. In occupationally exposed non-smoker subjects, BMA median excretion value (23.6 μg/l) was higher than in non-smoker referents (3.5 μg/l) (P<0.001) and individual BMA values (y, μg/l) were associated and increased with airborne toluene concentration (x, mg/m3) according to the equation y=6.5+0.65x (r=0.69, P<0.01, n=17). The proposed analytical method appears to be a sensitive and specific tool for biological monitoring of low-level exposure to benzene and toluene mixtures in occupational and environmental toxicology laboratory.  相似文献   

10.
Acetoin was quantitatively oxidized into diacetyl by Fe3+ in 1 M perchloric acid. The reaction of diacetyl with 4,5-dichloro-1,2-diaminobenzene afforded 6,7-dichloro-2,3-dimethylquinoxaline (DCDMQ), which was extracted by benzene containing aldrin (25 ng/ml) as an internal standard, and determined by gas chromatography with electron-capture detection. The method is very simple and sensitive. The detection limit of DCDMQ (either diacetyl or acetoin) was 10 fmol/μl of the benzene extract, and the determination limit of DCDMQ (either diacetyl or acetoin) was 50 fmol/μl of the extract. Both acetoin and diacetyl could be determined in 0.1 ml of normal human urine or blood, and both were found in rat liver, kidney and brain. The method was also applied to the determination of acetoin and diacetyl in alcoholic drinks.  相似文献   

11.
An ion-pair reversed-phase high-performance liquid chromatographic method with fluorimetric detection, using lumogallion [4-chloro-3-(2,4-dihydroxyphenylazo)-2-hydroxybenzene-1-sulphonic acid] as a ligand, has been successfully applied to the determination of aluminium in human serum. The highly fluorescent aluminium-lumogallion complex (λex 505 nm, λem 574 nm) was separated on a LiChrosorb RP-18 column with an eluent consisting of 30% acetonitrile, 70% 0.02 M potassium hydrogen phthalate and 10 μM lumogallion. The proposed system offers a simple, rapid, selective and sensitive method for the determination of aluminium in serum. The detection limit for aluminium was 0.05 μg/l in aqueous solution and the limit of determination was 2.2 μg/l in serum. The recovery of the method is generally over 90%.  相似文献   

12.
A sensitive gas chromatographic–mass spectrometric method is described for reliably measuring endogenous uracil in 100 μl of human plasma. Validation of this assay over a wide concentration range, 0.025 μM to 250 μM (0.0028 μg/ml to 28 μg/ml), allowed for the determination of plasma uracil in patients treated with agents such as eniluracil, an inhibitor of the pyrimidine catabolic enzyme, dihydropyrimidine dehydrogenase. Calibration standards were prepared in human plasma using the stable isotope, [15N2]uracil, to avoid interference from endogenous uracil and 10 μM 5-chlorouracil was added as the internal standard.  相似文献   

13.
Measurement of nitrite and nitrate, the stable oxidation products of nitric oxide (NO), provides a useful tool to study NO synthesis in vivo and in cell cultures. A simple and rapid fluorometric HPLC method was developed for determination of nitrite through its derivatization with 2,3-diaminonaphthalene (DAN). Nitrite, in standard solution, cell culture medium, or biological samples, readily reacted with DAN under acidic conditions to yield the highly fluorescent 2,3-naphthotriazole (NAT). For analysis of nitrate, it was converted to nitrite by nitrate reductase, followed by the derivatization of nitrite with DAN to form NAT. NAT was separated on a 5-μm reversed-phase C8 column (150×4.6 mm, I.D.) guarded by a 40-μm reversed-phase C18 column (50×4.6 mm, I.D.), and eluted with 15 mM sodium phosphate buffer (pH 7.5) containing 50% methanol (flow-rate, 1.3 ml/min). Fluorescence was monitored with excitation at 375 nm and emission at 415 nm. Mean retention time for NAT was 4.4 min. The fluorescence intensity of NAT was linear with nitrite or nitrate concentrations ranging from 12.5 to 2000 nM in water, cell culture media, plasma and urine. The detection limit for nitrite and nitrate was 10 pmol/ml. Because NAT is well separated from DAN and other fluorescent components present in biological samples, our HPLC method offers the advantages of high sensitivity and specificity as well as easy automation for quantifying picomole levels of nitrite and nitrate in cell culture medium and biological samples.  相似文献   

14.
A highly sensitive ion monitoring method for the determination of valproic acid in saliva and in serum has been developed based on the gas chromatographic—mass spectrometric analysis of the tert.-butyldimethylsilyl derivatives. Extraction methods are simple and the techniques for derivatization are rapid and convenient. Selected ion monitoring was carried out using electron ionization conditions and a common ion m/z 201 (M+ − 57) present in valproic acid and the internal standard octanoic acid. The lower limit of sensitivity that has acceptable precision for assay purposes is 0.1 mg/l based on a 200-μl sample size. The ion monitoring method (derivatized) was compared to a gas chromatographic method (underivatized) for serum valproate assays and found to be essentially identical.The assay methodology was used in a kinetic study of valproic acid in two normal subjects. Saliva levels of drug were found to give reasonably good correlations with serum total and with serum free concentrations of drug in both individuals.  相似文献   

15.
An indirect photometric ion chromatographic method for the simultaneous determination of chloride, nitrate and sulfate ions was developed and applied to the determination of anions, mainly nitrate, in the alga Haematococcus pluvialis culture media. Using phthalic acid/sodium tetraborate aqueous solution as the mobile phase, anions can be detected indirectly by a UV detector. The calibration curves for these anions gave good linearity from 1 to 1000 g ml–1.  相似文献   

16.
A simple reversed-phase high-performance liquid chromatographic method has been developed for the simultaneous determination of theophylline, ciprofloxacin and enoxacin in plasma and saliva. The biological fluid samples were extracted with methylene chloride-isopropyl alcohol prior to isocratic chromatography on a Waters C18 μBondapak column. Ultraviolet detection was carried out at 268 nm. The assay in linear for ciprofloxacin and enoxacin (0.05–10 μg/ml), and theophylline (0.1–20 μ/ml). The assay can be used to investigate the interaction of these two fluoroquinolones with theophylline.  相似文献   

17.
A high-performance liquid chromatographic method has been developed for the determination of a new cephalosporin antibiotic in plasma, urine and saliva (mixed saliva) using normal-phase technique and an NH2 bonded-phase column. The eluent mixture was a combination of acetonitrile and an aqueous solution of ammonium carbonate. The rapid method involved precipitation of protein from fluids by means of acetonitrile followed by automatic injection of the supernatant. The detection limit was 0.4 μg/ml for plasma, 3 μg/ml for urine and 0.03 μg/ml for saliva using UV detection.  相似文献   

18.
A high-performance liquid chromatographic (HPLC) method for the simultaneous determination of flumequine and its metabolite 7-hydroxyflumequine in sheep plasma was described. The two compounds were extracted from 100 μl of plasma by liquid–liquid extraction. Aliquots (100 μl) were injected onto the HPLC system and separated on a LiChrospher Select B column with an isocratic system. The compounds were detected by fluorimetric detection for concentrations below 500 μg/l and by UV detection for the concentrations exceeding 500 μg/l. The range of the validated concentrations were 50 000 to 5 μg/l and 500 to 10 μg/l with mean recovery rates of 87±3% and 60±1% for flumequine and 7-hydroxyflumequine, respectively.  相似文献   

19.
A method for the quantitative analysis of indomethacin and salicylic acid in blood serum and urine by high-performance liquid chromatography is described. A C18-bonded silica was used as the stationary phase and mixtures of ethanol, n-butanol and aqueous buffer as the mobile phase. Before injection the serum is deproteinized and extracted in one step.The recovery of the extraction was found to be 88% and 77% for indomethacin and salicylic acid, respectively. The relative standard deviations of the analysis for 0.5 μg indomethacin and 5 μg salicylic acid per ml serum were 3.6% and 3.2%, respectively. The detection limits for indomethacin and salicylic acid were 2 ng. This corresponds for both substances to 0.1 μg/ml serum for an injection volume of 100 μl.The method enables simultaneous determination of possibly formed metabolites. A number of concurrently administered drugs do not interfere with the analysis. The interactive effects of co-medication of indomethacin and salicylic acid on the serum concentration of indomethacin is demonstrated by measuring the pharmacokinetic curves.  相似文献   

20.
A method using reversed-phase high-performance liquid chromatography with electrochemical detection for the analysis of vancomycin in human plasma was developed. Chromatographic conditions included an octadecyl column, a mobile phase of acetonitrile–sodium phosphate buffer (pH 7) (12:88), a total run time of 12 min, and coulometric electrochemical detection at +700 mV. Linear detector response was found in the range 5–100 μg ml−1 after a 1:80 dilution or from 0.5 to 50 μg ml−1 after a 1:20 dilution of the samples. In both cases the correlation coefficient (r) of the calibration curve standard was better than 0.995. Vancomycin determination was based on a denaturation of plasma proteins with methanol, then a dilution with mobile phase was performed. Recovery of vancomycin from plasma was 103.1±3.9%, and no interference from commonly used drugs or endogenous compounds was observed. A significant correlation was shown with the EMIT assay (r=0.92, P<0.001) using clinical samples from children. This HPLC technique is simple, sensitive, rapid, precise, selective and requires only 100 μl of plasma for completion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号