首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A sensitive, selective and reproducible reversed-phase HPLC method with ultraviolet detection was developed for the quantification of diazepam in small plasma samples from children with severe malaria. The method involves plasma deproteinization with acetonitrile, followed by liquid–liquid extraction with ethyl acetate–n-hexane. Diazepam was eluted at ambient temperatures from a reversed-phase C18 column with an acidic (pH 3.5) aqueous mobile phase (10 mM KH2PO4–acetonitrile, 69:31, v/v). Calibration curves in spiked plasma were linear from 10 to 200 ng (r2≥0.99). The limit of detection was 5.0 ng/ml, and relative recoveries at 25 and 180 ng were >87%. Intra- and inter-assay relative standard deviations were <15%. There was no interference from drugs commonly administered to children with severe malaria (phenobarbitone, phenytoin, chloroquine, quinine, sulfadoxine, pyrimethamine, halofantrine, cycloguanil, chlorcycloguanil, acetaminophen and salicylate). This method has been used for monitoring plasma diazepam concentrations in children with seizures associated with severe malaria.  相似文献   

2.
A rapid, sensitive and reproducible high-performance liquid chromatographic assay for busulfan in human plasma was developed. After extraction of plasma samples with acetonitrile and methylene chloride, busulfan and the internal standard [1,5-bis(methanesulfonyloxy)pentane] were derivatized with 8-mercaptoquinoline to yield fluorescent compounds which were detected with a fluorescence detector equipped with filters of 360 nm (excitation) and 425 nm (emission). Calibration graphs showed a linear correlation (r>0.9990) over the concentration range of 20–2000 ng/ml. The recovery of busulfan from plasma standards was 70±5%. The detection and quantification limits for busulfan in plasma samples were established at 9 ng/ml and 20 ng/ml, respectively. The intra- and inter-assay variations were lower than 8% and 10%, respectively. The applicability of the method was verified by analyzing the plasma concentrations of busulfan in a patient to whom it was administered orally on two different days.  相似文献   

3.
Optimisation of busulfan dosage in patients undergoing bone marrow transplantation is recommended in order to reduce toxic effects associated with high drug exposure. A new method was developed coupling liquid chromatography with mass spectrometry (LC–MS) and was validated for the determination of busulfan concentrations in plasma. Recovery was 86.7%, the limit of detection was 2.5 ng/ml and linearity ranged from 5 to 2500 ng/ml. The correlation between the busulfan concentrations measured by our previously published HPLC–UV method and the new HPLC–MS method was highly significant (P<0.0001). Sample volume was reduced and the method was rapid, sensitive and less expensive than the methods previously used in our laboratory. This method was used to determine the pharmacokinetic parameters of busulfan after the first administration of 1 mg/kg orally, in 13 children receiving the drug as part of the preparative regimen for bone marrow transplantation. Our results were similar to previously reported data. They showed that the apparent oral clearance of busulfan was 0.299±0.08 l/h/kg, and that it was significantly higher (P=0.02) in patients below the age of 5 years than in older children.  相似文献   

4.
An isocratic high-performance liquid chromatography (HPLC) method with ultraviolet detection for the simultaneous determination of clozapine and its two major metabolites in human plasma is described. Analytes are concentrated from alkaline plasma by liquid–liquid extraction with n-hexane–isoamyl alcohol (75:25, v/v). The organic phase is back-extracted with 150 μl of 0.1 M dibasic phosphate (pH 2.2 with 25% H3PO4). Triprolidine is used as internal standard. For the chromatographic separation the mobile phase consisted of acetonitrile–0.06 M phosphate buffer, pH 2.7 with 25% phosphoric acid (48:52, v/v). Analytes are eluted at a flow-rate of 1.0 ml/min, separated on a 250×4.60 mm I.D. analytical column packed with 5 μm C6 silica particles, and measured by UV absorbance detection at 254 nm. The separation requires 7 min. Calibration curves for the three analytes are linear within the clinical concentration range. Mean recoveries were 92.7% for clozapine, 82.0% for desmethylclozapine and 70.4% for clozapine N-oxide. C.V. values for intra- and inter-day variabilities were ≤13.8% at concentrations between 50 and 1000 ng/ml. Accuracy, expressed as percentage error, ranged from −19.8 to 2.8%. The method was specific and sensitive with quantitation limits of 2 ng/ml for both clozapine and desmethylclozapine and 5 ng/ml for clozapine N-oxide. Among various psychotropic drugs and their metabolites, only 2-hydroxydesipramine caused significant interference. The method is applicable to pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

5.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantitation of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma, using clozapine as internal standard. After sample alkalinization with 1 ml of NaOH (2 M) the test compounds were extracted from plasma using diisopropyl ether–isoamylalcohol (99:1, v/v). The organic phase was back-extracted with 150 μl potassium phosphate (0.1 M, pH 2.2) and 60 μl of the acid solution was injected into a C18 BDS Hypersil analytical column (3 μm, 100×4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.05 M, pH 3.7 with 25% H3PO4)–acetonitrile (70:30, v/v), and was delivered at a flow-rate of 1.0 ml/min. The peaks were detected using a UV detector set at 278 nm and the total time for a chromatographic separation was about 4 min. The method was validated for the concentration range 5–100 ng/ml. Mean recoveries were 98.0% for risperidone and 83.5% for 9-hydroxyrisperidone. Intra- and inter-day relative standard deviations were less than 11% for both compounds, while accuracy, expressed as percent error, ranged from 1.6 to 25%. The limit of quantitation was 2 ng/ml for both analytes. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it has successfully been applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

6.
A simple high-performance liquid chromatographic (HPLC) method was developed for the determination of losartan and its E-3174 metabolite in human plasma, urine and dialysate. For plasma, a gradient mobile phase consisting of 25 mM potassium phosphate and acetonitrile pH 2.2 was used with a phenyl analytical column and fluorescence detection. For urine and dialysate, an isocratic mobile phase consisting of 25 mM potassium phosphate and acetonitrile (60:40, v/v) pH 2.2 was used. The method demonstrated linearity from 10 to 1000 ng/ml with a detection limit of 1 ng/ml for losartan and E-3174 using 10 μl of prepared plasma, urine or dialysate. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of losartan in patients with kidney failure undergoing continuous ambulatory peritoneal dialysis (CAPD).  相似文献   

7.
An isocratic high-performance liquid chromatographic (HPLC) method with ultraviolet detection is described for the quantification of the atypical neuroleptic clozapine and its major metabolites, N-desmethylclozapine and clozapine N-oxide, in human serum or plasma. The method included automated solid-phase extraction on C18 reversed-phase material. Clozapine and its metabolites were separated by HPLC on a C18 ODS Hypersil analytical column (5 μm particle size; 250 mm × 4.6 mm I.D.) using an acetonitrile—water (40:60, v/v) eluent buffered with 0.4% (v/v) N,N,N′,N′-tetramethylethylenediamine and acetic acid to pH 6.5. Imipramine served as internal standard. After extraction of 1 ml of serum or plasma, as little as 5 ng/ml of clozapine and 10 or 20 ng/ml of the metabolites were detectable. Linearity was found for drug concentrations between 5 and 2000 ng/ml as indicated by correlation coefficients of 0.998 to 0.985. The intra- and inter-assay coefficients of variation ranged between 1 and 20%. Interferences with other psychotropic drugs such as benzodiazepines, antidepressants or neuroleptics were negligible. In all samples, collected from schizophrenic patients who had been treated with daily oral doses of 75–400 mg of clozapine, the drug and its major metabolite, N-desmethylclozapine, could be detected, while the concentrations of clozapine N-oxide were below 20 ng/ml in three of sixteen patients. Using the method described here, data regarding relations between therapeutic or toxic effects and drug blood levels or metabolism may be collected in clinical practice to improve the therapeutic efficacy of clozapine drug treatment.  相似文献   

8.
An isocratic high-performance liquid chromatographic method has been developed to determine ciprofloxacin levels in chinchilla plasma and middle ear fluid. Ciprofloxacin and the internal standard, difloxacin, were separated on a Keystone ODS column (100 × 2.1 mm I.D., 5 μm Hypersil) using a mobile phase of 30 mM phosphate buffer (pH 3), 20 mM triethylamine, 20 mM sodium dodecyl sulphate—acetonitrile (60:40, v/v). The retention times were 3.0 min for ciprofloxacin and 5.2 min for difloxacin. This fast, efficient protein precipitation procedure together with fluorescence detection allows a quantification limit of 25 ng/ml with a 50 μl sample size. The detection limit is 5 ng/ml with a signal-to-noise ratio of 5:1. Recoveries (mean ± S.D., n = 5) at 100 ng/ml in plasma and middle ear fluid were 89.4 ± 1.2% and 91.4 ± 1.6%, respectively. The method was evaluated with biological samples taken from chinchillas with middle ear infections after administering ciprofloxacin.  相似文献   

9.
A high-performance liquid chromatographic method for the measurement of bumetamide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol—water—glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5–2000 ng/ml.  相似文献   

10.
A rapid, selective and very sensitive ion-pairing reversed-phase HPLC method was developed for the simultaneous determination of trimebutine (TMB) and its major metabolite, N-monodesmethyltrimebutine (NDTMB), in rat and human plasma. Heptanesulfonate was employed as the ion-pairing agent and verapamil was used as the internal standard. The method involved the extraction with a n-hexane–isopropylalcohol (IPA) mixture (99:1, v/v) followed by back-extraction into 0.1 M hydrochloric acid and evaporation to dryness. HPLC analysis was carried out using a 4-μm particle size, C18-bonded silica column and water–sodium acetate–heptanesulfonate–acetonitrile as the mobile phase and UV detection at 267 nm. The chromatograms showed good resolution and sensitivity and no interference of plasma. The mean recoveries for human plasma were 95.4±3.1% for TMB and 89.4±4.1% for NDTMB. The detection limits of TMB and its metabolite, NDTMB, in human plasma were 1 and 5 ng/ml, respectively. The calibration curves were linear over the concentration range 10–5000 ng/ml for TMB and 25–25000 ng/ml for NDTMB with correlation coefficients greater than 0.999 and with within-day or between-day coefficients of variation not exceeding 9.4%. This assay procedure was applied to the study of metabolite pharmacokinetics of TMB in rat and the human.  相似文献   

11.
A high-performance liquid chromatographic method for the determination of eltanolone in plasma has been developed. Plasma samples containing eltanolone were diluted with acetonitrile to precipitate plasma proteins, and derivatized with 2,4-dinitrophenylhydrazine before direct injection onto a C18 column. The mobile phase was acetonitrile–water (70:30, v/v) containing 0.1% trifluoroacetic acid and detection was by UV absorbance at 367 nm. The quantitation limit was 0.020 μg/ml. The method has proven to be rapid, precise and sensitive in the range of concentrations found during and following intravenous anaesthesia.  相似文献   

12.
An isocratic high-performance liquid chromatographic method with ultraviolet detection was utilized for the investigation of the pharmacokinetics of naringenin and its glucuronide conjugate in rat plasma and brain tissue. Plasma and brain tissue were deproteinized by acetonitrile, then centrifuged for sample clean-up. The drugs were separated by a reversed-phase C18 column with a mobile phase consisting of acetonitrile–orthophosphoric acid solution (pH 2.5–2.8) (36:64, v/v). The detection limits of naringenin in rat plasma and brain tissue were 50 ng/ml and 0.4 μg/g, respectively. The glucuronide conjugate of naringenin was evaluated by the deconjugated enzyme β-glucuronidase. The naringenin conjugation ratios in rat plasma and brain tissue were 0.86 and 0.22, respectively, 10 min after naringenin (20 mg/kg, i.v.) administration. The mean naringenin conjugation ratio in plasma was approximately four fold that in brain tissue.  相似文献   

13.
This paper describes a simple high-performance liquid chromatographic method for the determination of PGT/1A (3- -pyroglutamyl- -thiazolidine-4-carboxylic acid), a new immunostimulating drug, in plasma and urine. The column was packed with LiChrospher-NH2 (5 μm), the mobile phase was 0.02 M monobasic potassium phosphate (pH 3.2 with concentrated phosphoric acid)—acetonitrile (25:75, v/v), the flow-rate was 1.2 ml/min, the detection wavelength was 210 nm and the apparatus was a Varian Model 5000. Plasma (1 ml) was added to 1.2 ml of acetonitrile and the supernatant injected; the urine was diluted 1:5. The retention time of PGT/1A was 9.4 min in plasma and 9.9 min in urine. The method was validated for recovery, accuracy and reproducibility. The results after intravenous injection in twelve volunteers are also given.  相似文献   

14.
A high-performance liquid chromatographic assay is described as a routine analytical method for the determination of fumagillin in rainbow trout muscle tissue. Muscle tissue samples (1 g) containing fumagillin were deproteinized with 8 ml of an acetonitrile-water mixture (2:6, v/v). The extracts were purified with a Bond Elut Octyl C8 cartridge column, washed with a water-methanol mixture (95:5, v/v; 4 ml) and fumagillin was eluted with acetonitrile (1 ml). Analytical separations were performed by reversed-phase HPLC with UV detection at 351 nm under gradient conditions. The mobile phase was acetonitrile-0.005 M tetrabutyl ammonium phosphate in water (pH 7.8). The assay is specific and reproducible within the fumagillin range of 20–1000 ng/g and recovery at 20 ng/g was 69.2%. Sample preparation involves the use of a robotic sample preparation system. Gravimetric validation of all operations enabled Good Laboratory Practices to be observed.  相似文献   

15.
Two liquid chromatography (LC) methods with fluorimetric detection have been developed to measure atenolol and propranolol in human plasma. The same 5 μm Nucleosil RP-18 column, extraction procedure and mobile phase (containing acetonitrile, water, triethylamine and phosphoric acid, pH 3) were used. The linearity ranges were 25–800 ng/ml for atenolol and 3.13–100 ng/ml for propranolol. The coefficients of variation for validation assays were lower than 15% at the concentration assayed. The functions of the analytical error were linear: SD (ng/ml)=7.698+0.037C for atenolol and SD (ng/ml)=0.126+0.036C for propranolol.  相似文献   

16.
An improved high-performance liquid chromatographic (HPLC) method utilizing solid-phase extraction (SPE) and midbore chromatography was developed for the determination of ranitidine in human plasma. A mobile phase of 20 mM K2HPO4-acetonitrile-triethylamine (87.9:12.0:0.1, v/v) pH 6.0 was used with a phenyl analytical column and ultraviolet detection (UV). The method demonstrated linearity from 25 to 1000 ng/ml in 500 μl of plasma with a detection limit of 10 ng/ml. The method was utilized in a pharmacokinetic study evaluating the effects of pancreatico-biliary secretions on ranitidine absorption.  相似文献   

17.
We developed and characterized a high-performance liquid chromatography (HPLC) assay for the determination of saquinavir, an HIV protease inhibitor, in human plasma samples. Extraction of plasma samples with diethyl ether resulted in quantitative recovery of both saquinavir and its stereoisomer Ro 31-8533 which was used as an internal standard. The assay was performed isocratically using 5 mM H2SO4 (pH 3.5) and acetonitrile (75.5:24.5, v/v) containing 10 mM tetrabutylammonium hydrogen sulfate (TBA) as a mobile phase, a Nucleosil 3C8 column kept at 45°C and UV detection at 240 nm. Using this method, saquinavir and Ro 31-8533 can be separated from endogenous substances, and in the concentration range of 5–110 ng/ml the relative standard deviations for the determination of saquinavir were below 5%. The detection limit of saquinavir in human plasma was 1 ng/ml. The usefulness of the method was demonstrated by quantification of saquinavir in plasma of human subjects treated with 600 mg of saquinavir per os or 12 mg intravenously.  相似文献   

18.
A sensitive and selective method for the determination of cefuroxime in bronchoalveolar lavage (BAL) fluid using high-performance liquid chromatography (HPLC) with UV detection at 280 nm after solid-phase extraction with C18 cartridges was developed. A Waters symmetry C18 column was used and the mobile phase was acetonitrile-0.05 M ammonium phosphate buffer (pH 3.2) (15:85, v/v). The method enabled the determination of cefuroxime at concentrations below 100 ng/ml, with a linear calibration curve at concentrations of 5–100 ng/ml for 400 μl of BAL. The intra- and inter-assay coefficient of variations for 10, 40 and 80 ng/ml were between 5.3 and 8.9%. Analytical recoveries were between 92.7 and 106.2%. The detection limit was 1 ng/ml at a signal-to-noise ratio of 3:1 using 400 μl of BAL. The method was successfully used for the analysis of BAL fluid from patients after oral administration of 500 mg cefuroxime axetil twice daily.  相似文献   

19.
Dilute solutions (50 ng/ml) of apomorphine in plasma are unstable at 37°C and pH 7.4. The chemical half-life is only 39 min. Mercaptoethanol (0.01%) is effective in stabilizing these samples while sodium metabisulphite (1%), which is generally used, is not effective. Biological samples are extracted with diethyl ether (recovery 96.5%) and analysed using HPLC with coulometric detection (oxidation potential 0.25 V). The stationary phase employed was C18 material (4 μm) and the mobile phase was phosphate buffer (pH 3)—acetonitrile (70:30, v/v). The flow-rate was 1.8 ml/min. This bioanalytical method presents a reliable tool for pharmacokinetic studies in man.  相似文献   

20.
A sensitive, stereoselective high-performance liquid chromatographic method with fluorescence detection for the measurement of bisoprolol enantiomers in human plasma and urine has been developed. Bisoprolol was extracted at alkaline pH with chloroform, followed by solid-phase extraction. The effluent was evaporated, and the reconstituted residue was chromatographed on a Chiralcel OD column with a mobile phase of hexane—2-propanol (10:0.9, v/v) containing 0.01% (v/v) diethylamine. Within the plasma and urine enantiomeric concentration ranges of 5–100 ng/ml and 25–1250 ng/ml, respectively, a linear relationship was obtained between the peak-height ratios and the corresponding concentrations. The limit of quantitation, defined as three times the baseline noise, was 2 ng/ml for each enantiomer in plasma. A preliminary pharmacokinetic study was undertaken in three healthy male volunteers following an oral dose of 5 mg of racemic bisoprolol. The results confirm that this assay is suitable for pharmacokinetic studies of bisoprolol enantiomers in humans following oral administration of the therapeutic dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号