首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Macrophage accumulation has been implicated in the pathogenesis of inflammatory glomerular disease. Monocyte chemoattractant protein-1 (MCP-1) plays a central role in recruiting monocytes to the glomeruli. Tumor necrosis factor-α (TNF-α) has been shown to induce MCP-1 expression in mesangial cells, although the precise mechanisms remain unclear. We previously demonstrated that RhoA and its effector, Rho-kinase (Rho-associated coiled-coil containing protein kinase, ROCK), are involved in the pathogenesis of diabetic nephropathy. However, its role in MCP-1 induction by TNF-α has not been elucidated. In the present study, we investigated whether the Rho/Rho-kinase signaling pathway regulates the TNF-α-mediated induction of MCP-1 in mesangial cells. Exposure of mouse mesangial cells (MES-13) to TNF-α resulted in an increase of MCP-1 expression (by RT-PCR) and secretion into the medium (by ELISA). Pull down and Western blot analysis revealed that TNF-α activated RhoA and Rho-kinase. Based on these observations, we speculated that the Rho/Rho-kinase signaling pathway may be involved in MCP-1 induction by TNF-α. In agreement with this concept, Y-27632, a specific Rho-kinase inhibitor, attenuated TNF-α-mediated induction of MCP-1. We demonstrated that Y-27632 inhibited TNF-α-mediated monocyte migration and attenuated TNF-α-mediated p38 MAPK activation. Based on these data we infer that Y-27632 inhibits TNF-α-induced MCP-1 expression, secretion and function through inhibition of Rho-kinase and p38 MAPK activity. Our study suggests that Rho/Rho-kinase is an important therapeutic target of monocyte recruitment and accumulation within the glomerulus in inflammatory renal disease.  相似文献   

2.
The epithelial-mesenchymal transition (EMT) and endoplasmic reticulum (ER) stress induced by urinary protein, particularly albumin, play an important role in tubulointerstitial injury. However, signaling pathways regulating both albumin-induced EMT and ER stress are not precisely known. We postulated that reactive oxygen species (ROS), c-Src kinase, and mammalian target of rapamysin (mTOR) would act as upstream signaling molecules. We further examined the effect of imatinib mesylate on these processes. All experiments were performed using HK-2 cells, a human proximal tubular cell line. Protein and mRNA expression were measured by Western blot analysis and real-time PCR, respectively. Exposure of tubular cells to albumin (5 mg/ml) for up to 5 days induced EMT in a time-dependent manner, as shown by conversion to the spindle-like morphology, loss of E-cadherin protein, and upregulation of α-smooth muscle actin mRNA and protein. Albumin also induced ER stress as evidenced by phosphorylation of eukaryotic translation initiation factor-2α and increased expression of GRP78 mRNA and protein. Albumin induced ROS, c-Src kinase, and mTOR as well. Antioxidants, c-Src kinase inhibitor (PP2), and mTOR inhibitor (rapamycin) suppressed the albumin-induced EMT and ER stress. Antioxidants and PP2 inhibited the albumin-induced c-Src kinase and mTOR, respectively. Imatinib suppressed the albumin-induced EMT and ER stress via inhibition of ROS and c-Src kinase. Imatinib also inhibited the albumin-induced mRNA expression of MCP-1, VCAM-1, transforming growth factor (TGF)-β1, and collagen I (α1). In conclusion, the ROS-c-Src kinase-mTOR pathway played a central role in the signaling pathway that linked albumin to EMT and ER stress. Imatinib might be beneficial in attenuating the albumin-induced tubular injury.  相似文献   

3.
4.
Thrombin has been shown to increase expression of chemokines such as monocyte chemoattractant protein 1 (MCP-1) in endothelial cells, leading to the development of atherosclerosis. However, the precise mechanism of this induction remains unknown. In the present study, we investigated whether the small G protein RhoA, and its effector, Rho-kinase are involved in MCP-1 induction by thrombin in endothelial cells. Y-27632, a specific Rho-kinase inhibitor, potently inhibited MCP-1 induction by thrombin. Y-27632 significantly decreased the chemotactic activity of thrombin-stimulated supernatants of endothelial cells on monocytes. Importantly, fasudil, a specific Rho-kinase inhibitor, attenuated MCP-1 gene expression in the aorta of db/db mice. Y-27632 attenuated thrombin-mediated phosphorylation of p38MAPK and p65, indicating that Rho-kinase mediates thrombin-induced MCP-1 expression through p38MAPK and NF-κB activation. Our findings demonstrate that the Rho/Rho-kinase signaling pathway plays a critical role in thrombin-mediated MCP-1 expression and function, and suggest that Rho/Rho-kinase may be an important target in the development of new therapeutic strategies for atherosclerosis.  相似文献   

5.
6.
Adenosine monophosphate-activated protein kinase (AMPK) is a well-known serine/threonine kinase that has been implicated in modulation of glucose and fatty acid metabolism. Recent reports have also implicated AMPK in modulation of mucin secretion. In this study, the effects and signaling pathways of AMPK on MUC5B expression were investigated in human NCI-H292 airway epithelial cells. Metformin, as an activator of AMPK, induced MUC5B expression in a dose-dependent manner. Compound C, as an inhibitor of AMPK, inhibited metformin-induced MUC5B expression in a dose-dependent manner. Metformin significantly activated phosphorylation of AMPK; compound C inhibited metformin-activated phosphorylation of AMPK. Without treatment with metformin, there was no difference in MUC5B mRNA expression between Ad-dnAMPK transfected and wild-type adenovirus transfected NCI-H292 cells. However, after treatment with metformin, MUC5B mRNA expression was increased in wild-type adenovirus transfected NCI-H292 cells; MUC5B mRNA expression was significantly decreased in Ad-dnAMPK transfected NCI-H292 cells. Metformin activated phosphorylation of p38 mitogen-activated protein kinase (MAPK); compound C inhibited metformin-activated phosphorylation of p38 MAPK. SB203580, as an inhibitor of p38 MAPK, significantly inhibited metformin-induced MUC5B mRNA expression, while U0126, as an inhibitor of ERK1/2 MAPK, had no effect. In addition, knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked metformin-induced MUC5B mRNA expression. In conclusion, results of this study show that AMPK induces MUC5B expression through the p38 MAPK signaling pathway in airway epithelial cells.  相似文献   

7.
8.
E1A激活基因阻遏子过表达抑制体外人血管平滑肌细胞凋亡   总被引:12,自引:0,他引:12  
Han YL  Xu HM  Deng J  Hu Y  Kang J  Liu HW  Yan CH 《生理学报》2006,58(4):324-330
为探讨E1A激活基因阻遏子(cellular repressor of E1A-stimulated genes,CREG)对人血管平滑肌细胞(vascular smooth muscl ecells,VSMCs)凋亡的影响及调控机制,应用正、反义重组逆转录病毒表达载体pLNCX,(+)/CREG及pLXSN(-)/CREG制备稳定感染人胸廓内动脉平滑肌细胞克隆株(human internal thoracic artery-Shenyang,HITASY)细胞模型,观察CREG蛋白过表达及表达抑制对平滑肌细胞凋亡的影响。荧光显微镜下观察DAPI染色后凋亡细胞核形态,AnnexinV/PI流式细胞术检测细胞凋亡率,RT-PCR技术分析凋亡相关基因caspase-9mRNA的表达,蛋白质印迹法分析p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38MAPK)、磷酸化p38MAPK(phosphorylated p38 mitogen-activated proteinkinase,P-p38 MAPK)的表达变化。研究结果显示,CREG蛋白过表达明显抑制血清饥饿诱导的HITASY细胞凋亡的发生;同时细胞中p38MAPK、P-p38MAPK的表达增加。相反,抑制CREG蛋白表达则引起正常血清培养状态下VSMCs的自发凋亡明显增加,同时细胞内p38MAPK、P-p38MAPK表达显著下降。进一步研究发现,预先应用特异性抑制剂SB203580阻断p38MAPK信号转导通路后,CREG蛋白过表达引起的细胞凋亡抑制作用被明显减弱,血清饥饿后CREG蛋白过表达引起的HITASY细胞凋亡现象明显增加。上述结果提示,CREG蛋白过表达可以抑制体外培养的VSMCs凋亡,p38MAPK信号转导通路可能介导CREG蛋白对VSMCs凋亡的抑制作用。  相似文献   

9.
The ability of cisplatin (cis‐diamminedichloroplatinum II) toxicity to induce acute kidney injury (AKI) has attracted people's attention and concern for a long time, but its molecular mechanisms are still widely unknown. We found that the expression of transforming growth factor‐β (TGF‐β)‐activated kinase 1 (TAK1) could be increased in kidneys of mice administrated with cisplatin. Autophagy is an evolutionarily conserved catabolic pathway and is involved in various acute and chronic injuries. Moreover, p38 MAPK (mitogen‐activated protein kinase) and ERK regulate autophagy in response to various stimuli. Therefore, our hypothesis is that cisplatin activates TAK1, which phosphorylates p38 and ERK, leading to excessive autophagy of tubular epithelial cells and thus exacerbating kidney damage. Here, BALB/c mice were intraperitoneally injected with a TAK1 inhibitor and were then administrated with sham or cisplatin at 20 mg/kg by intraperitoneal injection. Compared with mice in the vehicle cisplatin group, mice intraperitoneally injected with a TAK1 inhibitor were found to have lower serum creatinine and less tubular damage following cisplatin‐induced AKI. Furthermore, inhibition of TAK1 reduced p38 and Erk phosphorylation, decreased expression of LC3II and reversed the down‐regulation of P62 expression induced by cisplatin. The hypothesis was verified with tubular epithelial cells administrated with cisplatin in vitro. Finally, p38 inhibitor or ERK inhibitor abated autophagy activation and cell viability reduction in tubular epithelial cells treated with cisplatin plus TAK1 overexpression vector. Taken together, our results show that cisplatin activates TAK1, which phosphorylates p38 and ERK, leading to excessive autophagy of tubular epithelial cells that exacerbates kidney damage.  相似文献   

10.
p~(38)MAPK在IL-18诱导肾小管上皮细胞转分化中的作用   总被引:1,自引:0,他引:1  
目的:白细胞介素18(IL-18)可诱导肾小管上皮细胞转分化,本研究探讨其是否是通过p38MAPK途径而起作用。方法:应用不同浓度的p38MAPK通路特异性阻断剂SB203580(0、5、10、20μmol/L)预孵育人近端肾小管上皮细胞(HK-2细胞)30min后,加入IL-18(100ng/ml)共培养24、48、72h。应用RT-PCR法检测α-平滑肌肌动蛋白(α-SMA)mRNA的表达水平;应用ELISA法测定细胞浆中α-SMA蛋白质含量。结果:SB203580呈剂量依赖性地抑制IL-18诱导的HK-2细胞α-SMA基因表达(P0.05)。结论:p38MAPK通路是调控IL-18诱导肾小管上皮细胞转分化的主要信号通路之一。  相似文献   

11.
12.
Lv ZM  Wang Q  Wan Q  Lin JG  Hu MS  Liu YX  Wang R 《PloS one》2011,6(7):e22806

Background

Epithelial-mesenchymal transition of tubular epithelial cells, which is characterized by a loss of epithelial cell characteristics and a gain of ECM-producing myofibroblast characteristics, is an essential mechanism that is involved in tubulointerstitial fibrosis, an important component of the renal injury that is associated with diabetic nephropathy. Under diabetic conditions, p38 MAPK activation has been reported in glomeruli and mesangial cells; however, studies on p38 MAPK in TECs are lacking. In this study, the role of p38 MAPK in AP-1 activation and in the EMT in the human proximal tubular epithelial cell line (HK-2) under high glucose concentration conditions is investigated.

Methodology/Principal Findings

A vector for small interfering RNA that targets p38 MAPK was constructed; the cells were then either transfected with p38 siRNA or pretreated with a chemical inhibitor of AP-1 and incubated with low glucose plus TGF-β1 or high glucose for 48 h. Cells that were not transfected or pretreated and were exposed to low glucose with or without TGF-β1 or high glucose for 48 h were considered to be the controls. We found that high glucose induced an increase in TGF-β1. And high glucose-induced p38 MAPK activation was inhibited by p38 siRNA (P<0.05). A significant decline in E-cadherin and CK expression and a notable increase in vimentin and α-SMA were detected when exposed to low glucose with TGF-β1 or high glucose, and a significant raise of secreted fibronectin were detected when exposed to high glucose; whereas these changes were reversed when the cells were treated with p38 siRNA or AP-1 inhibitor (P<0.05). AP-1 activity levels and Snail expression were up-regulated under high glucose conditions but were markedly down-regulated through knockdown of p38 MAPK with p38 siRNA or pretreatment with AP-1 inhibitor (P<0.05).

Conclusion

This study suggests that p38 MAPK may play an important role in the high glucose-induced EMT by activating AP-1 in tubular epithelial cells.  相似文献   

13.
14.
15.
16.
The chemotaxis and adhesion of monocytes to the injured endothelium in the early atherosclerosis is important. Cilostazol, a specific phosphodiesterase type III inhibitor, is known to exhibit anti-atherosclerotic effects mediated by different mechanisms. This study aimed to investigate the modulating effect of cilostazol on the MCP-1-induced chemotaxis and adhesion of monocytes. The gene expression of CCR2, the major receptor of MCP-1 in THP-1 monocytes, was also analyzed. The chemotaxis of monocytes toward MCP-1 was investigated using the transwell filter assay. Cilostazol dose-dependently inhibited the MCP-1-induced chemotaxis of monocytes which was shown to be cAMP-dependent. Using western blot analysis and flow cytometry method, we demonstrated the decrease of CCR2 protein at the cell membrane of monocytes by cilostazol treatment. Results from RT/real-time PCR confirmed the decrease of CCR2 mRNA expression by cilostazol which was also mediated by cAMP. Similar inhibition was also noted in human peripheral monocytes. The post-CCR2 signaling pathways including p44/42 and p38 MAPK were examined by western blot analysis. Result confirmed the inhibitory effect of cilostazol on the phosphorylation of p44/42 and p38 MAPK after MCP-1 stimulation. The activation of monocytes after MCP-1 treatment exhibited enhanced adhesion to vascular endothelial cells which was dose-dependently suppressed by cilostazol. Together, cilostazol was demonstrated, for the first time, to inhibit the CCR2 gene expression and MCP-1-induced chemotaxis and adhesion of monocytes which might therefore reduce the infiltration of monocytes during the early atherosclerosis. The present study provides an additional molecular mechanism underlying the anti-atherosclerotic effects of cilostazol.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号