首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Xist gene belongs to the class of long noncoding regulatory RNA genes which play a key role in the process of inactivation of one of the X chromosomes in females of placental mammals. Based on inter-specific comparative sequence analysis performed using a set of bioinformatic programs and approaches, the exon-intron gene structure was first described in two species, elephant and armadillo, belonging to the most primitive placental mammal groups, Afrotheria and Xenarthra. Using multiple sequence alignment of the species representing all main groups of placental mammals (12 species), consensus sequence of the ancestral gene was reconstructed. In the gene structure four evolutionary conserved regions with the identity level of 90% and the sizes of more than 100 bp were identified. Substantial contribution of transposable elements to the gene origin, as well as mosaic evolution of certain elements of the Xist locus was demonstrated. It is likely that the ancestral gene consisted of ten exons and was formed before the radiation of placental mammals, in the period from 140 to 105 Myr ago.  相似文献   

2.
Kolesnikov NN  Elisafenko EA 《Genetika》2010,46(10):1379-1385
The Xist gene belongs to the class of long noncoding regulatory RNA genes which play a key role in the process of inactivation of one of the X chromosomes in females of placental mammals. Based on interspecific comparative sequence analysis performed using a set ofbioinformatic programs and approaches, the exon-intron gene structure was first described in two species, elephant and armadillo, belonging to the most primitive placental mammal groups, Afrotheria and Xenarthra. Using multiple sequence alignment of the species representing all main groups of placental mammals (12 species), consensus sequence of the ancestral gene was reconstructed. In the gene structure four evolutionary conserved regions with the identity level of 90% and the sizes of more than 100 bp were identified. Substantial contribution of transposable elements to the gene origin, as well as mosaic evolution of certain elements of the Xist locus was demonstrated. It is likely that the ancestral gene consisted often exons and was formed before the radiation of placental mammals, in the period from 140 to 105 Myr ago.  相似文献   

3.
4.
5.
6.
7.
8.
ZFY-like genes have been observed in a variety of vertebrate species. Although originally implicated as the primary testis-determining gene in humans and other placental mammals, more recent evidence indicates a role(s) outside that of testis determination. In this study, DNA from five species of fish,Carasius auratus, Rivulus marmoratus, Xiphophorus maculatus, X. milleri, andX. nigrensis was subjected to Southern blot analysis using a PCR-amplified fragment of mouseZFY-like sequence as a probe. Restriction fragment patterns were not polymorphic between sexes in any one species but showed a different pattern for each species. With one exception,Rivulus, a 3.1-kb band from theEcoRI digestion was common to all. Sequence and open reading frame analysis of this fragment showed a strong homology to other known vertebrateZFY-like genes. Of particular interest in this gene is a novel third finger domain similar to one human and one alligatorZFY-like gene. Our studies and others provide evidence for a family of vertebrateZFY genes, with those having this novel third finger being representative of the ancestral condition.  相似文献   

9.
10.
《Epigenetics》2013,8(8):568-570
In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The non coding RNA Xist triggers X inactivation. Gene silencing by Xist is only possible in certain developmental contexts that only exist in cells of the early embryo and specific hematopoietic progenitors. Critical silencing factors may only be present in these contexts giving an explanation of why Xist is not operative outside these contexts. It has been demonstrated that Xist is functional in tumor cells, where SATB1 was identified as the first silencing factor for Xist mediated chromosome silencing.  相似文献   

11.
12.
The relaxin/insulin-like (RLN/INSL) gene family comprises a group of signaling molecules that perform physiological roles related mostly to reproduction and neuroendocrine regulation. They are found on three different locations in the mammalian genome, which have been called relaxin family locus (RFL) A, B, and C. Early in placental mammalian evolution, the ancestral proto-RLN gene at the RFLB locus underwent successive rounds of small-scale duplications resulting in variable number of paralogous genes in different placental lineages. Most placental mammals harbor copies of the RLN2 and INSL6 paralogs in the RFLB. However, the origin of an additional paralog, INSL4 (also known as placentin), has been controversial as its phyletic distribution does not converge with its phylogenetic position. In principle, by searching for INSL4 genes in representative species of all major groups of mammals we can gain insights into when the gene originated and better reconstruct its evolutionary history. Here we identified INSL4 pseudogenes in two laurasiatherian, (alpaca and dolphin) and one xenarthran (armadillo) species. Phylogenetic and synteny analyses confirmed that the identified pseudogenes are orthologs of INSL4. According to these results, the proto-RLN gene in the RFLB underwent two successive tandem duplications which gave rise the INSL6 and INSL4 paralogs in the last common ancestor of placental mammals. The INSL4 gene was subsequently inactivated or lost from the genome in all placentals other than catarrhine primates, where its product became functionally relevant. Our results highlight the contribution of relatively old gene duplicates to the gene complement of extant species.  相似文献   

13.
14.
During X chromosome inactivation (XCI), in female placental mammals, gene silencing is initiated by the Xist long non‐coding RNA. Xist accumulation at the X leads to enrichment of specific chromatin marks, including PRC2‐dependent H3K27me3 and SETD8‐dependent H4K20me1. However, the dynamics of this process in relation to Xist RNA accumulation remains unknown as is the involvement of H4K20me1 in initiating gene silencing. To follow XCI dynamics in living cells, we developed a genetically encoded, H3K27me3‐specific intracellular antibody or H3K27me3‐mintbody. By combining live‐cell imaging of H3K27me3, H4K20me1, the X chromosome and Xist RNA, with ChIP‐seq analysis we uncover concurrent accumulation of both marks during XCI, albeit with distinct genomic distributions. Furthermore, using a Xist B and C repeat mutant, which still shows gene silencing on the X but not H3K27me3 deposition, we also find a complete lack of H4K20me1 enrichment. This demonstrates that H4K20me1 is dispensable for the initiation of gene silencing, although it may have a role in the chromatin compaction that characterises facultative heterochromatin.  相似文献   

15.
Zhao L  Zhao G  Xi H  Liu Y  Wu K  Zhou H 《Molecular biology reports》2011,38(5):3495-3504
Peg10 is a maternally imprinted gene located in the imprinted domain of human chromosome 7q21 and mouse proximal chromosome 6. It is predominantly expressed in, and participates in the formation of, the placenta. Moreover, Peg10 is overexpressed in hepatocellular carcinoma, and is involved in hepatocarcinogenesis. The large noncoding RNA Xist has been shown to direct the female mammalian X chromatosome dosage compensation pathway. In the present study, we obtained partial cDNA sequences of sheep Peg10 and Xist. mRNA expression analysis in nine organs showed that they were universally expressed in two-day old lambs. The mRNA expression profile of Peg10 showed similar tissue specificity to pig, but was different compared with human and mouse. We concluded that the Peg10 mRNA expression profile was species specific. However, there was little difference in Xist expression between nine tissues of female lambs. Using bisulfite sequencing, we revealed that the first exon of Xist was either completely methylated or completely unmethylated, indicating that the newly obtained fragment of Xist was also differentially methylated in sheep as the DMR of Peg10. We did not find tissue specific DNA methylation of Xist, consistent with the Xist mRNA expression profile.  相似文献   

16.
In mammals, the levels of X-linked gene products in males and females are equalised by the silencing, early in development, of most of the genes on one of the two female X chromosomes. Once established, the silent state is stable from one cell generation to the next. In eutherian mammals, the inactive X chromosome (Xi) differs from its active homologue (Xa) in a number of ways, including increased methylation of selected CpGs, replication late in S-phase, expression of the Xistgene with binding of Xist RNA and underacetylation of core histones. The latter is a common property of genetically inactive chromatin but, in the case of Xi, it is not clear whether it is an integral part of the silencing process or simply a consequence of some other property of Xi, such as late replication. The present review describes two approaches that address this problem. The first shows that Xi in marsupial mammals also contains underacetylated H4, even though its properties differ widely from those of the eutherian Xi. The continued presence of histone underacetylation on Xi in these evolutionarily distant mammals argues for its fundamental importance. The second approach uses mouse embryonic stem cells and places H4 deacetylation in a sequence of events leading to complete X inactivation. The results argue that histone underacetylation plays a role in the stabilisation of the inactive state, rather than in its initiation. Dev. Genet. 22:65–73, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The Xist sequence has several characteristics that make it a potential candidate for the X-inactivation center. To investigate the role of Xist and adjacent sequences lying within the X-inactivation center candidate region, a 460-kb region surrounding the murine Xist sequence has been arrayed in lambda contigs with a combination of IRS-PCR-based hybridization and YAC fragmentation. The orientation of the Xist sequence in relation to the telomere and centromere of the X Chromosome (Chr) has been established with this contig and shown to be inverted compared to that in human.  相似文献   

18.
19.
In mice, dosage compensation of X‐linked gene expression is achieved through the inactivation of one of the two X‐chromosomes in XX female cells. The complex epigenetic process leading to X‐inactivation is largely controlled by Xist and Tsix, two non‐coding genes of opposing function. Xist RNA triggers X‐inactivation by coating the inactive X, while Tsix is critical for the designation of the active X‐chromosome through cis‐repression of Xist RNA accumulation. Recently, a plethora of trans‐acting factors and cis‐regulating elements have been suggested to act as key regulators of either Xist, Tsix or both; these include ubiquitous factors such as Yy1 and Ctcf, developmental proteins such as Nanog, Oct4 and Sox2, and X‐linked regulators such as Rnf12. In this paper we summarise recent advances in our knowledge of the regulation of Xist and Tsix in embryonic stem (ES) and differentiating ES cells.  相似文献   

20.
A molecular phylogenetic hypothesis is presented for the anoplocephaline cestodes of placental mammals based on sequence data from the mitochondrial cytochrome c oxidase I (COI) gene, the nuclear-encoded 28S rRNA gene and the internal transcribed spacer region I of rRNA (ITS1). The material consists of 35 species representing nine genera of cestodes, with emphasis on taxa parasitising rodents and lagomorphs in the Holarctic region. The resulting phylogenies show considerable disagreement with earlier systematic and phylogenetic hypotheses derived from morphology. Specifically, the results contradict the view of uterine morphology being the primary determinant of deeper phylogenetic splits within Anoplocephalinae. Also, the role of genital duplication as a means of generic divergence was not found to follow consistently the pattern suggested by earlier hypotheses. Colonisation of novel host lineages has evidently been the predominant mode of diversification in anoplocephaline cestodes of placental mammals; evidence for phyletic co-evolution was obscure. The phylogenies consistently distinguished a large monophyletic group including all species from arvicoline rodents (voles and lemmings), primarily representing the genera Anoplocephaloides Baer, 1923 and Paranoplocephala Lühe, 1910. Phylogenetic relationships within the “arvicoline clade” of cestodes were generally poorly resolved. Consistent support for nodes above and below the unresolved polytomy indicates a rapid radiation involving a nearly simultaneous diversification of many lineages, a scenario also proposed for the arvicoline hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号