首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five singly spin labeled side chains at surface sites in the C-terminal domain of RGL2 protein have been analyzed to investigate the general relationship between nitroxide side chain mobility and protein structure. At these sites, the structural perturbation produced by replacement of a native residue with a nitroxide side chain appears to be very slight at the level of the backbone fold. The primary determinants of the nitroxide side chain mobility are backbone dynamics and tertiary interactions. On the exposed surfaces of alpha-helices, the side chain mobility is not restricted by tertiary interactions but appears to be determined by backbone dynamics, while in loop sites, the side chain mobility is even higher. For a better understanding of the changes in the EPR spectral line shape, molecular dynamics simulations were performed and found in agreement with EPR spectral data.  相似文献   

2.
Previous studies have shown that the mobility of nitroxide side chains in a protein, inferred from the electron paramagnetic resonance (EPR) spectra, can be used to classify particular sites as helix surface sites, tertiary contact sites, buried sites, or loop sites. In addition, the sequence dependence of mobility can identify regular secondary structure. However, in the most widely used side chain, an apparent interaction of the nitroxide ring with the protein at some helix surface sites gives rise to EPR spectra degenerate with those at tertiary contact sites. In the present study, we use selected sites in T4 lysozyme to evaluate novel nitroxide side chains designed to resolve this degeneracy. The results indicate that the reagent 3-(methanesulfonylthiomethyl)-2,2, 5,5-tetramethylpyrrolidin-1-yloxy reacts with cysteine to give a nitroxide side chain that has a high contrast in mobility between helix surface and tertiary contact sites, effectively resolving the degeneracy. The reagent 3-(iodomercuriomethyl)-2,2,5,5-tetramethyl-2, 5-dihydro-1H-pyrrol-1-yloxy reacts with cysteine to provide a mercury-linked nitroxide that also shows reduced interaction with the protein at most helix surface sites. Thus, these new side chains may be the preferred choices for structure determination using site-directed spin labeling.  相似文献   

3.
Side chain dynamics monitored by 13C-13C cross-relaxation   总被引:1,自引:0,他引:1  
A method to measure (13)C-(13)C cross-relaxation rates in a fully (13)C labeled protein has been developed that can give information about the mobility of side chains in proteins. The method makes use of the (H)CCH-NOESY pulse sequence and includes a suppression scheme for zero-quantum (ZQ) coherences that allows the extraction of initial rates from NOE buildup curves.The method has been used to measure (13)C-(13)C cross-relaxation rates in the 269-residue serine-protease PB92. We focused on C(alpha)-C(beta) cross-relaxation rates, which could be extracted for 64% of all residues, discarding serine residues because of imperfect ZQ suppression, and methyl (13)C-(13)C cross-relaxation rates, which could be extracted for 47% of the methyl containing C-C pairs. The C(alpha)-C(beta) cross-relaxation rates are on average larger in secondary structure elements as compared to loop regions, in agreement with the expected higher rigidity in these elements. The cross-relaxation rates for methyl containing C-C pairs show a general decrease of rates further into the side chain, indicating more flexibility with increasing separation from the main chain. In the case of leucine residues also long-range C(beta)-C(delta) cross-peaks are observed. Surprisingly, for most of the leucines a cross-peak with only one of the methyl C(delta) carbons is observed, which correlates well with the chi(2) torsion-angle and can be explained by a difference in mobility for the two methyl groups due to an anisotropic side chain motion.  相似文献   

4.
Polarized luminescence was used to study the mobility of tryptophan residues in polypeptide chains of different chemical composition and structural organization. It has been shown that the luminescence depolarization of tryptophan residues in coillike, helical, and β-structural polypeptide chains is mainly caused by “fast” torsional vibrations and “slow” rotational isomerization of indole groups of tryptophan side chains. The characteristics of these types of motions are practically the same for tryptophan residues included in coillike chains of different chemical structure. Helix–coil transitions in copolymers of glutamic acid and lysine with tryptophan (Glu, Trp) and (Lys, Trp) (where side groups of tryptophan residues weakly interact with the surrounding side groups) do not appreciably change the amplitude of torsional vibrations or rotational isomerization. At the same time, in the helical state of glutamic acid–leucine–tryptophan copolymers (Glu, Leu, Trp) and in the β-structural state of (Lys, Trp) copolymers (where direct interactions of Trp side groups with other side groups are possible), the amplitudes of the torsional vibrations are smaller and the rotational isomerization times larger than in the coil. The transition of (Glu, Leu, Trp) polypeptide chains into a compact state is accompanied by a marked decrease of both “fast” and “slow” intra-molecular mobility and by an increase of the contribution made by the rotation of the macromolecule as a whole, as shown by the decrease of the luminescence polarization.  相似文献   

5.
A 30-residue nitroxide scan encompassing a helical hairpin and an extended loop in soluble annexin 12 (helices D and E in repeat 2; residues 134-163) has been analyzed in terms of nitroxide side chain mobility and accessibility to collision with paramagnetic reagents (Pi). Values of Pi for both O(2) and a Ni(II) metal complex (NiEDDA) are remarkably well correlated with the fractional solvent accessibility of the native side chains at the corresponding positions computed from the known crystal structure. This result demonstrates the utility of Pi as an experimental measure of side chain accessibility in solution, as well as the lack of structural perturbation due to the presence of the nitroxide side chain. The pattern of side chain mobility is also in excellent agreement with predictions from the crystal structure. The results presented here extend the correlations between mobility and structure described in earlier work on other helical proteins, and suggest their generality. The periodic dependence of Pi and mobility along the sequence of annexin 12 reveals the helical segments and their orientation in the fold, as expected for a nonperturbing nitroxide side chain. However, these data do not distinguish the helix-loop-helix motif from a continuous helix, because immobilized side chains in the short loop sequence maintain the periodicity. As shown here, the ratio of Pi values for O(2) and NiEDDA clearly delineates the loop region, due to size exclusion effects between the two reagents. A new feature evident in a nitroxide scan through multiple secondary elements is a modulation of the basic Pi and mobility patterns along the sequence, apparently due to differences in helix packing and backbone motion. Thus, in the short helix D, residues are consistently more mobile and accessible throughout the sequence compared to the residues in the longer, less-solvated and more ordered helix E.  相似文献   

6.
Loh AP  Pawley N  Nicholson LK  Oswald RE 《Biochemistry》2001,40(15):4590-4600
Cdc42Hs is a signal transduction protein that is involved in cytoskeletal growth and organization. We describe here the methyl side chain dynamics of three forms of (2)H,(13)C,(15)N-Cdc42Hs [GDP-bound (inactive), GMPPCP-bound (active), and GMPPCP/PBD46-bound (effector-bound)] from (13)C-(1)H NMR measurements of deuterium T(1) and T(1 rho) relaxation times. A wide variation in flexibility was observed throughout the protein, with methyl axis order parameters (S(2)(axis)) ranging from 0.2 to 0.4 (highly disordered) in regions near the PBD46 binding site to 0.8--1.0 (highly ordered) in some helices. The side chain dynamics of the GDP and GMPPCP forms are similar, with methyl groups on the PBD46 binding surface experiencing significantly greater mobility (lower S(2)(axis)) than those not on the binding surface. Binding of PBD46 results in a significant increase in the disorder and a corresponding increase in entropy for the majority of methyl groups. Many of the methyl groups that experience an increase in mobility are found in residues that are not part of the PBD46 binding interface. This entropy gain represents a favorable contribution to the overall entropy of effector binding and partially offsets unfavorable entropy losses such as those that occur in the backbone.  相似文献   

7.
Analysis of residual dipolar couplings (RDCs) in the Delta131Delta fragment of staphylococcal nuclease has demonstrated that its ensemble-averaged structure is resistant to perturbations such as high concentrations of urea, low pH, and substitution of hydrophobic residues, suggesting that its residual structure is encoded by local side-chain/backbone interactions. In the present study, the effects of these same perturbations on the backbone dynamics of Delta131Delta were examined through (1)H-(15)N relaxation methods. Unlike the global structure reported by RDCs, the transverse relaxation rates R(2) were quite sensitive to denaturing conditions. At pH 5.2, Delta131Delta exhibits an uneven R(2) profile with several characteristic peaks involving hydrophobic chain segments. Protonation of carboxyl side chains by lowering the pH reduces the values of R(2) along the entire chain, yet these characteristic peaks remain. In contrast, high concentrations of urea or the substitution of 10 hydrophobic residues eliminates these peaks and reduces the R(2) values by a greater amount. The combination of low pH and high urea leads to further decreases in R(2). These denaturant-induced increases in backbone mobility are also reflected in decreases in (15)N NOEs and in relaxation interference parameters, with the former reporting an increase in fast motions and the latter a decrease in slow motions. Comparison between the changes in chain dynamics and the corresponding changes in Stokes radius and the patterns of RDCs suggests that regional variations in backbone dynamics in denatured nuclease arise primarily from local contacts between hydrophobic side chains and local interactions involving charged carboxyl groups.  相似文献   

8.
For the elucidation of the mechanism of membrane stabilization by vitamin E, the effects of alpha-tocopherol and its model compounds on either retinol-induced hemolysis of rabbit erythrocytes or the permeability and fluidity of liposomal membranes have been studied. Retinol-induced rabbit erythrocyte hemolysis has been found not to be caused by the oxidative disruption of erythrocyte membrane lipids initiated by retinol oxidation, but rather to arise from physical damage of the membrane micelle induced by penetration of retinol molecules. In suppressing hemolysis, alpha-tocopherol was more effective than other naturally occurring tocopherols. alpha-Tocopheryl acetate, nicotinate, and 6-deoxy-alpha-tocopherol were more effective than alpha-tocopherol itself. The inhibitory effects of alpha-tocopherol model compounds having side chains with at least two isoprene units or a long straight chain instead of the isoprenoid side chain were similar to those of alpha-tocopherol. These data suggest that for protection of membranes against retinol-induced damage, the hydroxyl group of alpha-tocopherol is not critical, but rather the chroman ring, three methyl groups on the aromatic ring, and the long side chain are necessary. To verify the mechanism of the inhibitory effect on hemolysis, not only the effect of vitamin E and its model compounds on the membrane permeability and fluidity, but also the mobility of alpha-tocopherol molecule in membranes has been investigated using bilayer liposomes as the model membranes. Addition of alpha-tocopherol to membranes produced a greater decrease in the permeability and fluidity of rat liver phosphatidylcholine liposomes compared with egg yolk phosphatidylcholine liposomes. In dipalmitoylphosphatidylcholine liposomes, however, alpha-tocopherol was less effective, that is, the more unsaturated the lipids, the more they interact with alpha-tocopherol. 2,2,5,7,8-Pentamethyl-6-chromanol with no isoprenoid side chain and phytol without the chromanol moiety had no effect. The measurement of 13C NMR relaxation times revealed that the mobility of methyl groups on the aromatic ring of alpha-tocopherol in membranes is significantly restricted. In contrast, the methyl groups at positions 4'a and 8'a on the isoprenoid side chain have high degrees of motional freedom in the lipid core of membranes. Furthermore, it was found that alpha-tocopherol in membranes interacts with chromate ions added as potassium chromate outside the membranes, resulting in an increase in membrane fluidity. These results are compatible with those of the inhibitory effect on retinol-induced erythrocyte hemolysis. On the basis of the results obtained here, a possible mechanism for membrane stabilization by vitamin E is proposed.  相似文献   

9.
10.
11.
Eleven single-cysteine substitution mutants have been prepared in the sequence 325-340 of rhodopsin, corresponding to the C-terminal domain. Each of the cysteine mutants was modified with a selective nitroxide reagent to introduce a spin-labeled side chain. The electron paramagnetic resonance spectra of the labeled proteins were analyzed in terms of side chain dynamics. At all sites, the spectra reflected the presence of two populations of different mobility, although one was always dominant. The mobility of the dominant population increased in a regular fashion from the palmitoylation sites at 322C and 323C to the C-terminus, where the spectra resembled those of an unfolded protein. This apparent mobility gradient is only slightly affected in mutants lacking the palmitoyl groups, suggesting that they are not responsible for physically anchoring the C-terminal peptide at one end. Binding of a monoclonal antibody to its epitope at the C-terminus dramatically reduces the mobility of nearby residues, creating a local mobility gradient opposite that in the absence of the antibody. These results indicate that the C-terminal domain of rhodopsin, beyond the palmitoylation sites, is highly disordered and dynamic, resembling an unfolded peptide tethered at one end.  相似文献   

12.
13.
Recently defined family of intrinsically disordered proteins (IDP) includes proteins lacking rigid tertiary structure meanwhile fulfilling essential biological functions. Here we show that apo-state of pike parvalbumin (alpha- and beta-isoforms, pI 5.0 and 4.2, respectively) belongs to the family of IDP, which is in accord with theoretical predictions. Parvalbumin (PA) is a 12-kDa calcium-binding protein involved into regulation of relaxation of fast muscles. Differential scanning calorimetry measurements of metal-depleted form of PA revealed the absence of any thermally induced transitions with measurable denaturation enthalpy along with elevated specific heat capacity, implying the lack of rigid tertiary structure and exposure of hydrophobic protein groups to the solvent. Calcium removal from the PAs causes more than 10-fold increase in fluorescence intensity of hydrophobic probe bis-ANS and is accompanied by a decrease in alpha-helical content and a marked increase in mobility of aromatic residues environment, as judged by circular dichroism spectroscopy (CD). Guanidinium chloride-induced unfolding of the apo-parvalbumins monitored by CD showed the lack of fixed tertiary structure. Theoretical estimation of energetics of the charge-charge interactions in the PAs indicated their pronounced destabilization upon calcium removal, which is in line with sequence-based predictions of disordered protein chain regions. Far-UV CD studies of apo-alpha-PA revealed hallmarks of cold denaturation of the protein at temperatures below 20 degrees C. Moreover, a cooperative thermal denaturation transition with mid-temperature at 10-15 degrees C is revealed by near-UV CD for both PAs. The absence of detectable enthalpy change in this temperature region suggests continuous nature of the transition. Overall, the theoretical and experimental data obtained show that PA in apo-state is essentially disordered nevertheless demonstrates complex denaturation behavior. The native rigid tertiary structure of PA is attained upon association of one (alpha-PA) or two (beta-PA) calcium ions per protein molecule, as follows from calorimetric and calcium titration data.  相似文献   

14.
Columbus L  Hubbell WL 《Biochemistry》2004,43(23):7273-7287
In site-directed spin labeling, a nitroxide-containing side chain is introduced at selected sites in a protein. The EPR spectrum of the labeled protein encodes information about the motion of the nitroxide on the nanosecond time scale, which has contributions from the rotary diffusion of the protein, from internal motions in the side chain, and from backbone fluctuations. In the simplest model for the motion of noninteracting (surface) side chains, the contribution from the internal motion is sequence independent, as is that from protein rotary diffusion. Hence, differences in backbone motions should be revealed by comparing the sequence-dependent motions of nitroxides at structurally homologous sites. To examine this model, nitroxide side chains were introduced, one at a time, along the GCN4-58 bZip sequence, for which NMR (15)N relaxation experiments have identified a striking gradient of backbone mobility along the DNA-binding region [Bracken et al. (1999) J. Mol. Biol. 285, 2133]. Spectral simulation techniques and a simple line width measure were used to extract dynamical parameters from the EPR spectra, and the results reveal a mobility gradient similar to that observed in NMR relaxation, indicating that side chain motions mirror backbone motions. In addition, the sequence-dependent side chain dynamics were analyzed in the DNA/protein complex, which has not been previously investigated by NMR relaxation methods. As anticipated, the backbone motions are damped in the DNA-bound state, although a gradient of motion persists with residues at the DNA-binding site being the most highly ordered, similar to those of helices on globular proteins.  相似文献   

15.
Heterogeneity of packing: structural approach.   总被引:2,自引:1,他引:1       下载免费PDF全文
Analysis of the heterogeneity of packing in proteins showed that different groups of the protein preferentially contribute to low- or high-density regions. Statistical distribution reveals the two preferable values for packing density in the form of two peaks. One peak occurs in the range of densities 0.55-0.65, the other occurs in the range 0.75-0.8. The high-density peak is originated primarily by high packing inside the hydrogen bonded backbone and to some extent by side chains. Polar/charged and apolar side chains both contribute to the low-density peak. The average packing density values of individual atomic groups significantly vary for backbone atoms as well as for side chain atoms. The carbonyl oxygen atoms of protein backbone and the end groups of side chains show lower packing density than the rest of the protein. The side-chain atomic groups of a secondary structure element when packed against the neighboring secondary structure element form stronger contacts with the side chains of this element than with its backbone. Analysis of the low-density regions around each buried peptide group was done for the set of proteins with different types of packing, including alpha-alpha, alpha-beta, and beta-beta packing. It was shown that cavities are regularly situated in the groove of secondary structure element packed against neighboring elements for all types of packing. Low density in the regions surrounding the peptide groups and the end groups of side chains can be explained by their positioning next to a cavity formed upon the association of secondary structure elements. The model proposed can be applied to the analysis of protein internal motions, mechanisms of cellular signal transduction, diffusion through protein matrix, and other events.  相似文献   

16.
In yeast iso-1-cytochrome c, the side chain of histidine 26 (His26) attaches omega loop A to the main body of the protein by forming a hydrogen bond to the backbone atom carbonyl of glutamic acid 44. The His26 side chain also forms a stabilizing intra-loop interaction through a hydrogen bond to the backbone amide of asparagine 31. To investigate the importance of loop-protein attachment and intra-loop interactions to the structure and function of this protein, a series of site-directed and random-directed mutations were produced at His26. Yeast strains expressing these variant proteins were analyzed for their ability to grow on non-fermentable carbon sources and for their intracellular production of cytochrome c. While the data show that mutations at His26 lead to slightly decreased intracellular amounts of cytochrome c, the level of cytochrome c function is decreased more. The data suggest that cytochrome c reductase binding is affected more than cytochrome c oxidase or lactate dehydrogenase binding. We propose that mutations at this residue increase loop mobility, which, in turn, decreases the protein's ability to bind redox partners.  相似文献   

17.
The propensity of backbone Cα atoms to engage in carbon‐oxygen (CH···O) hydrogen bonding is well‐appreciated in protein structure, but side chain CH···O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH···O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH···O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH···O hydrogen bonding contributes to the energetics of protein structure and folding. Proteins 2015; 83:403–410. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
This paper describes a biophysical investigation of residual mobility in complexes of bovine carbonic anhydrase II (BCA) and para-substituted benzenesulfonamide ligands with chains of 1–5 glycine subunits, and explains the previously observed increase in entropy of binding with chain length. The reported results represent the first experimental demonstration that BCA is not the rigid, static globulin that has been typically assumed, but experiences structural fluctuations upon binding ligands. NMR studies with 15N-labeled ligands demonstrated that the first glycine subunit of the chain binds without stabilization or destabilization by the more distal subunits, and suggested that the other glycine subunits of the chain behave similarly. These data suggest that a model based on ligand mobility in the complex cannot explain the thermodynamic data. Hydrogen/deuterium exchange studies provided a global estimate of protein mobility and revealed that the number of exchanged hydrogens of BCA was higher when the protein was bound to a ligand with five glycine subunits than when bound to a ligand with only one subunit, and suggested a trend of increasing number of exchanged hydrogens with increasing chain length of the BCA-bound ligand, across the series. These data support the idea that the glycine chain destabilizes the structure of BCA in a length-dependent manner, causing an increase in BCA mobility. This study highlights the need to consider ligand-induced mobility of even “static” proteins in studies of protein-ligand binding, including rational ligand design approaches.  相似文献   

19.
In vivo ether stress of rats causes release of pituitary adrenocorticotropin (ACTH) leading to activation of steroidogenesis in adrenal cortex mitochondria. The present studies show that this treatment also induces a decrease in the volume of the intermembrane space in isolated adrenal mitochondria. This decrease is accompanied by an increase in the volume of the matrix, thus leaving the total mitochondrial volume approximately constant. These effects are prevented by the protein synthesis inhibitor, cycloheximide, and are specific to the adrenal gland. The decrease in the intermembrane space (or increase in the matrix volume) is correlated with activation of the cholesterol side chain cleavage reaction (the regulated step in steroidogenesis). We propose as a working hypothesis that these changes reflect a hormonally regulated alteration in the relationship between the outer and inner mitochondrial membranes, which may facilitate the rate-limiting movement of cholesterol from the outer to the inner membrane where the side chain cleavage enzyme is located.  相似文献   

20.
We have investigated the relationship between function and molecular dynamics of both the lipid and the Ca-ATPase protein in sarcoplasmic reticulum (SR), using temperature as a means of altering both activity and rotational dynamics. Conventional and saturation-transfer electron paramagnetic resonance (EPR) was used to probe rotational motions of spin-labels attached either to fatty acid hydrocarbon chains or to the Ca-ATPase sulfhydryl groups in SR. EPR studies were also performed on aqueous dispersions of extracted SR lipids, in order to study intrinsic lipid properties independent of the protein. While an Arrhenius plot of the Ca-ATPase activity exhibits a clear change in slope at 20 degrees C, Arrhenius plots of lipid hydrocarbon chain mobility are linear, indicating that an abrupt thermotropic change in the lipid hydrocarbon phase is not responsible for the Arrhenius break in enzymatic activity. The presence of protein was found to decrease the average hydrocarbon chain mobility, but linear Arrhenius plots were observed both in the intact SR and in extracted lipids. Lipid EPR spectra were analyzed by procedures that prevent the production of artifactual breaks in the Arrhenius plots. Similarly, using sample preparations and spectral analysis methods that minimize the temperature-dependent contribution of local probe mobility to the spectra of spin-labeled Ca-ATPase, we find that Arrhenius plots of overall protein rotational mobility also exhibit no change in slope. The activation energy for protein mobility is the same as that of ATPase activity above 20 degrees C; we discuss the possibility that overall protein mobility may be essential to the rate-limiting step above 20 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号