首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work continues with an examination of capillary exchange models as operators, namely the operatorsO k andK αk relating extravascular and intravascular concentration to input for the Krogh cylinder model of a single capillary, a model basic to many organ models. Fundamental algebraic and analytic properties are presented: the operators belong to a commutative Banach algebra; an addition theorem holdsK αk +K βk =K α+β,k ; the operatorK αk has an inverse;K αk -1 , (as an operator on LebesgueL p space or on the locally integrable functions); partial derivatives are given forK αk [f](t) andO k [f](t) (sensitivity functions); and inequalities are established for the derivatives. Dominance relations between model curves are inferred. Error bound formulas are presented forK andO as bounds on ‖K αk f-K βl f p and ‖O k f-O l f p for allL p . Consequent limitations on relative errors are shown. The implications for operators on a finite time interval are deduced. This work supported in part by PHS Grant Nos HL-19153 (SCOR and Pulmonary Vascular Disease) and HL-19370 at Vanderbilt University Medical School.  相似文献   

2.
Isolated internodes of Chara corallina and Nitella flexilis have been used to determine the concentration of one passively permeating solute in the presence of non-permeating solutes. The technique was based on the fact that the shape of the peaks of the biphasic responses of cell turgor (as measured in a conventional way using the cell pressure probe) depended on the concentration and composition of the solution and on the permeability and reflection coefficients of the solutes. Peak sizes were proportional to the concentration of the permeating solute applied to the cell. Thus, using the selective properties of the cell membrane as the sensing element and changes of turgor pressure as the physical signal, plant cells have been used as a new type of biosensor based on osmotic principles. Upon applying osmotic solutions, the responses of cell turgor (P) exactly followed the P(t) curves predicted from the theory based on the linear force/flow relations of irreversible thermodynamics. The complete agreement between theory and experiment was demonstrated by comparing measured curves with those obtained by either numerically solving the differential equations for volume (water) and solute flow or by using an explicit solution of the equations. The explicit solution neglected the solvent drag which was shown to be negligible to a very good approximation. Different kinds of local beers (regular and de-alcoholized) were used as test solutions to apply the system for measuring concentrations of ethanol. The results showed a very good agreement between alcohol concentrations measured by the sensor technique and those obtained from conventional techniques (enzymatic determination using alcohol dehydrogenase or from measurement of the density and refraction index of beer). However, with beer as the test solution, the characean internodes did show irreversible changes of the transport properties of the membranes leading to a shift in the responses when cells were treated for longer than 1 h with diluted beer. The accuracy and sensitivity of the osmotic biosensor technique as well as its possible applications are discussed.  相似文献   

3.
Direct plant uptake of metals bound to chelating agents has important implications for metal uptake and the free-ion activity model. Uptake of hydrophilic solutes such as metal–EDTA complexes is believed to occur via bypass apoplastic flow, but many questions remain about the relative importance and selectivity of this pathway. In this study, Brassica juncea (Indian mustard) plants grown in solution- and sand-culture conditions were exposed to metal–EDTA complexes and to PTS, a hydrophilic fluorescent dye previously used as a tracer of apoplastic flow. The results suggest that there are two general phases of solute uptake. Under normal conditions, xylem sap solute concentrations are relatively low (i.e., <0.5% of concentration in solution) and there is a high degree of selectivity among different solutes, while under conditions of stress, xylem sap concentrations are significantly higher (i.e., >3% of concentration in solution) and the selectivity among solutes is less. In healthy plants, xylem sap metal–EDTA concentrations were generally an order of magnitude higher than those of PTS and differences among complexes were observed, with CdEDTA2− exhibiting slightly higher xylem sap concentrations than PbEDTA2− or FeEDTA. Metal–EDTA complexes were found to dominate xylem sap metal speciation and the fraction of metal in xylem sap present as metal–EDTA was greater for non-nutrient metals (Pb, Cd) than for the nutrient metal Fe. Despite differences in root morphology between plants grown under solution- and sand-culture conditions, uptake of solutes was similar under both sets of growth conditions.  相似文献   

4.
It is postulated that cell hydration is governed by adsorption of water on cell proteins in accord with the Bradley adsorption isotherm, and that the action of a solute in the surrounding solution is to lower the vapor pressure of the solution so that cell water adsorption is decreased by moving down the Bradley isotherm. From these concepts, it is derived that cell volume (V) should be related to solute concentration (x) by the equationV=−E log10 x+F whereE andF are constants which are independent of type of solute. For a non-adsorbed solute this agrees well with experimental data. For solutes which are adsorbed by cell proteins, a correction in the above equation may be necessary at higher solute concentrations, which is shown to be compatible with various experimental data. The types of experiments which are generally used to support the osmotic pressure theory of cell hydration agree equally well with the adsorption theory. The virtue of the adsorption theory is that, unlike the osmotic pressure theory of cell swelling, it is compatible with permeability of the cell membrane to solutes, which has been experimentally observed for various solutes. The opinions and conclusions contained in this report are those of the author. They are not to be construed as necessarily reflecting the views or the endorsement of the Navy Department.  相似文献   

5.
Solute mobilities in cuticular membranes of six species (Hedera helix, Malus domestica, Populus alba, Pyrus communis, Stephanotis floribunda, Strophantus gratus) were measured using plant hormones, growth regulators and other organic model compounds varying in molar volumes from 99 to 349 mL · mol−1 The dependence of mobilities (k*) on molar volume (V x ) was exponential and could be described with equations of the type log k*=log k*0 V x . The y-intercepts (log k*0) represent mobilities of a hypothetical solute of zero molar volume. The parameter β′ is a measure of size selectivity of cuticular membranes and no differences among the six species were observed. At 25 °C the average β′ was 0.0095 mol · mL−1. Solute mobility decreased by about a factor of 8.9 when molar volume increased by 100 mL · mol−1 and the mobility of a compound with V x  = 100 mL · mol−1 was about 700-fold higher than the mobility of a compound with V x  = 400 mL · mol−1. Size selectivity decreased with increasing temperatures and for Strophantusβ′-values of 1.6 × 10−2 to 8.0 × 10-4 mol · mL−1 were obtained for 10 and 30 °C, respectively. The-intercepts (log k*0) differed among plant species by 3 orders of magnitude and since size selectivity was the same for all species, solute mobilities for solutes having zero molar volumes were the sole cause for differences among species in solute mobilities and permeabilities. We argue that these differences in k*0 are related to tortuosity of the diffusion path. These results were used to derive an equation which predicts rates of cuticular penetration on the basis of k*0, the average size selectivity of 9.5 × 10−3 mol · mL−1 and the driving forces of penetration. Received: 25 November 1997 / Accepted: 9 March 1998  相似文献   

6.
Bottlenose dolphins (Tursiops truncatus) are marine mammals with body water needs challenged by little access to fresh water and constant exposure to salt water. Osmoregulation has been studied in marine mammals for a century. Research assessing the effects of ingested fresh water or seawater in dolphins, however, has been limited to few animals and sampling times. Nine 16- to 25-h studies were conducted on eight adult dolphins to assess the hourly impact of fresh water, seawater, and seawater with protein ingestion on plasma and urine osmolality, urine flow rate (ufr), urinary and plasma solute concentrations, and solute clearance rates. Fresh water ingestion increased ufr. Fresh water ingestion also decreased plasma and urine osmolality, sodium and chloride urine concentrations, and solute excretion rates. Seawater ingestion resulted in increased ufr, sodium, chloride, and potassium urine concentrations, sodium excretion rates, and urine osmolality. Seawater with protein ingestion was associated with increased ufr, plasma osmolality, sodium excretion, and sodium, chloride, potassium, and urea urine concentrations. In conclusion, bottlenose dolphins appear to maintain water and plasma solute balance after ingesting fresh water or seawater by altering urine osmolality and solute clearance. Ingestion of protein with seawater appears to further push osmoregulation limits and urine solute concentrations in dolphins.  相似文献   

7.
To provide an in-depth insight into the molecular basis of spontaneous tautomerism in DNA and RNA base pairs, a hybrid Monte Carlo (MC)–quantum chemical (QC) methodology is implemented to map two-dimensional potential energy surfaces along the reaction coordinates of solvent-assisted proton transfer processes in guanosine and its analog acyclovir in aqueous solution. The solvent effects were simulated by explicit inclusion of water molecules that model the relevant part of the first hydration shell around the solute. The position of these water molecules was estimated by carrying out a classical Metropolis Monte Carlo simulation of dilute water solutions of the guanosine (Gs) and acyclovir (ACV) and subsequently analyzing solute–solvent intermolecular interactions in the statistically-independent MC-generated configurations. The solvent-assisted proton transfer processes were further investigated using two different ab initio MP2 quantum chemical approaches. In the first one, potential energy surfaces of the ‘bare’ finite solute–solvent clusters containing Gs/ACV and four water molecules (MP2/6-31+G(d,p) level) were explored, while within the second approach, these clusters were embedded in ‘bulk’ solvent treated as polarizable continuum (C-PCM/MP2/6-31+G(d,p) level of theory). It was found that in the gas phase and in water solution, the most stable tautomer for guanosine and acyclovir is the 1H-2-amino-6-oxo form followed by the 2-amino-6-(sZ)-hydroxy form. The energy barriers of the water-assisted proton transfer reaction in guanosine and in acyclovir are found to be very similar – 11.74 kcal mol?1 for guanosine and 11.16 kcal mol?1 for acyclovir, and the respective rate constants (k = 1.5?×?101 s?1, guanosine and k = 4.09?×?101 s?1, acyclovir), are sufficiently large to generate the 2-amino-6-(sZ)-hydroxy tautomer. The analysis of the reaction profiles in both compounds shows that the proton transfer processes occur through the asynchronous concerted mechanism.  相似文献   

8.
We consider a general, neutral, dynamical model of biodiversity. Individuals have i.i.d. lifetime durations, which are not necessarily exponentially distributed, and each individual gives birth independently at constant rate λ. Thus, the population size is a homogeneous, binary Crump–Mode–Jagers process (which is not necessarily a Markov process). We assume that types are clonally inherited. We consider two classes of speciation models in this setting. In the immigration model, new individuals of an entirely new species singly enter the population at constant rate μ (e.g., from the mainland into the island). In the mutation model, each individual independently experiences point mutations in its germ line, at constant rate θ. We are interested in the species abundance distribution, i.e., in the numbers, denoted I n (k) in the immigration model and A n (k) in the mutation model, of species represented by k individuals, k = 1, 2, . . . , n, when there are n individuals in the total population. In the immigration model, we prove that the numbers (I t (k); k ≥ 1) of species represented by k individuals at time t, are independent Poisson variables with parameters as in Fisher’s log-series. When conditioning on the total size of the population to equal n, this results in species abundance distributions given by Ewens’ sampling formula. In particular, I n (k) converges as n → ∞ to a Poisson r.v. with mean γ/k, where γ : = μ/λ. In the mutation model, as n → ∞, we obtain the almost sure convergence of n −1 A n (k) to a nonrandom explicit constant. In the case of a critical, linear birth–death process, this constant is given by Fisher’s log-series, namely n −1 A n (k) converges to α k /k, where α : = λ/(λ + θ). In both models, the abundances of the most abundant species are briefly discussed.  相似文献   

9.
The problem of finding exact simultaneous confidence bounds for differences in regression models for k groups via the union‐intersection method is considered. The error terms are taken to be iid normal random variables. Under an assumption slightly more general than having identical design matrices for each of the k groups, it is shown that an existing probability point for the multivariate studentized range can be used to find the necessary probability point for pairwise comparisons of regression models. The resulting methods can be used with simple or multiple regression. Under a weaker assumption on the k design matrices that allows more observations to be taken from the control group than from the k‐1 treatment groups, a method is developed for computing exact probability points for comparing the simple linear regression models of the k‐1 groups to that of the control. Within a class of designs, the optimal design for comparisons with a control takes the square root of (k‐1) times as many observations from the control than from each treatment group. The simultaneous confidence bounds for all pairwise differences and for comparisons with a control are much narrower than Spurrier's intervals for all contrasts of k regression lines.  相似文献   

10.
Concentration Polarization in an Ultrafiltering Capillary   总被引:2,自引:0,他引:2       下载免费PDF全文
Concentration polarization, the accumulation of retained solute next to an ultrafiltering membrane, elevates osmotic pressure above that which would exist in the absence of polarization. For ultrafiltration in a cylindrical tube, use of the radially averaged solute concentration results in an underestimate of osmotic pressure, yielding an effective hydraulic permeability (k) less than the actual membrane hydraulic permeability (km). The extent to which k and km might differ in an ultrafiltering capillary has been examined theoretically by solution of the momentum and species transport equations for idealized capillaries with and without erythrocytes. For diameters, flow velocities, protein concentrations and diffusivities, and ultrafiltration pressures representative of the rat glomerular capillary network, results indicate that the effects of polarization are substantial without erythrocytes (k/km = 0.7) and persist, but to a lesser extent, with erythrocytes (k/km = 0.9), the reduction in polarization in the latter case being due to enhanced plasma mixing. In accord with recent experimental findings in rats, k is found to be relatively insensitive to changes in glomerular plasma flow rate.  相似文献   

11.
Let {Q1, …, Qk} be the potencies of k substances relative to a standard in a multiple dilution assay. Joint confidence bounds for these are given with confidence coefficient at least 1-α. These bounds are easily interpreted; they appeal to available tables; they improve Scheffe's bounds; they are based on applicable probability inequalities together with extensions of Fieller's theorem; and they are genuinely nonparametric. The procedures are illustrated using data from parallel-line and slope-ratio assays.  相似文献   

12.
The maxi cation channel from the plasma membrane of rye (Secale cereale L.) roots was studied following its incorporation into planar phosphatidylethanolamine bilayers. Current recordings were made in the presence of 100-mm KCl containing quinine on both sides of the bilayer. Quinine produced voltage- and concentration-dependent blockade of the channel, reducing its apparent unitary current and open probability. The voltage-dependence suggested that blockade was effected from the cytoplasmic side by cationic quinine. Blockade was modelled using a kinetic scheme with two independent blocked states termed B1 and B2 (B1OB2). Rate constants promoting fast kinetics (k 1 and k −1 ) were found to be several orders of magnitude greater than those promoting slow kinetics (k 2 and k −2 ). Analysis of the fast kinetics indicated that the rate constants for blockade of the open channel at the first site (k 1 ) and its clearance (k −1 ) had voltage-dependencies (zδ p ) of 0.41 and −0.71, respectively, and that the equilibrium dissociation constant for the binding site (K d (0)) was about 1 mm. Analysis of the slow kinetics indicated that the rate constants for blockade of the open channel at the second site (k 2 ) and its clearance (k −2 ) had zδ p values of 0.12 and −1.27, respectively. The K d (0) value for the second binding site was about 10 mm. Received: 20 January 1998/Revised: 1 May 1998  相似文献   

13.
The objective of this work was to determine (1) the effect of rotational speed (N) and lifters on the oxygen transfer coefficient (k L) of a mineral solution and (2) the effect of solids concentration of a slurry soil-mineral solution on k L, at a fixed value N (0.25 s−1); in both cases the treatment was carried out in an aerated rotating drum reactor (RDR) operated at atmospheric pressure. First, the k L for the mineral solution was in the range 6.38 × 10−4–7.69 × 10−4 m s−1, which was of the same order of magnitude as those calculated for closed rotating drums supplied with air flow. In general, k L of RDR implemented with lifters was superior or equal to that of RDR without lifters. For RDR implemented with lifters, k L increased with N in the range 6.65 × 10−4–10.51 × 10−4 m s−1, whereas k L of RDR without lifters first increased with N up to N = 0.102 s−1, and decreased beyond this point. Second, regarding soil slurry experiments, an abrupt fall of k L (ca. 50%) at low values of the solid concentration (C v) and an asymptotic pattern at high C v were observed at N = 0.25 s−1. These results suggest that mass transfer phenomena were commanded by the slurry properties and a semi-empirical equation of the form Sh = f(Re, Sc) seems to corroborate this finding.  相似文献   

14.
Pointwise upper and lower bounds for the solution of a class of nonlinear diffusion problems with Michaelis-Menten kinetics are presented. Simple analytical bounding curves are obtained and for an illustrative case the calculated values bound the recent numerical solution of P. Hiltmann and P. Lory, 1983.Bull. math. Biol. 45, 661–664.  相似文献   

15.
When the functionQ in the equation ∇2c +Q(c) = 0 is positive and is of a specified kind, the equation admits of a centrally spherical solution such thatc is positive everywhere, tending to zero at infinity anddc/dr=0 atr=0. Physically this corresponds to a local concentration of the solute in an infinite medium without any membranes present. This result would indicate the possibility of the formation of spontaneous concentrations and non-uniformities in non-linear diffusion fields. Possible biological implications are mentioned. *** DIRECT SUPPORT *** A01E2041 00002  相似文献   

16.
 The model alkylating agent N-ethylmaleimide (NEM) reacts reversibly at the metal-bound thiolates of Zn7MT and Cd7MT. An unprecedented feature of this reaction is that it approaches equilibrium and requires a large excess of NEM (>1 mM for 3 μM protein) to drive it to completion. The complex kinetics of the reaction can be followed by monitoring the release of bound metal ions using the metallochromic dyes Zincon (ZI) for Zn7MT and pyridylazoresorcinol for Cd7MT. An initial lag phase is followed by more rapid release of zinc ions. The observed pseudo-first-order rate constants for the two phases are independent of the ZI and Zn7MT concentrations. The complex NEM concentration dependence of each phase, k f, obs=k f 1+k f 2 [NEM] and k s, obs=k s 1+k s 2 [NEM], demonstrates that the forward reactions are second order and the reverse reactions are first order. The alkylation can be reversed using 2-mercaptoethanol to compete for the protein-bound NEM and regenerate the Zn-binding capability of alkylated MT. An explanation of these observations, based on the reversibility of cysteine alkylation by NEM, was developed and tested. The reactions of Cd7MT are less complete than those of Zn7MT and occur more slowly. 111Cd-NMR studies of the partially alkylated 111Cd7MT reveal that reaction with only four equivalents of NEM completely alters the cluster structure and eliminates the spectral signatures of the α and β clusters, although very little cadmium has been removed from the protein. This finding substantiates the proposed kinetic intermediate, a partially alkylated MT with complete or nearly complete retention of the metal ions, and rules out the possibility of cooperative reactions at either cluster. Received: 5 August 1996 / Accepted: 24 October 1996  相似文献   

17.
The purpose of the following research was to improve the original Celsior solution in order to obtain a higher degree of stability and effectiveness. The solution was modified by the addition of selected antioxidants such as vitamin C, cysteine, and fumaric acid in the following concentrations: 0.1, 0.3, and 0.5 mmol/l. The solution’s stability was estimated using an accelerated stability test based on changes in histidine concentrations in the solution using Pauly’s method for determining concentrations. Elevated temperatures, the factor accelerating substances’ decomposition reaction rate, were used in the tests. The research was conducted at four temperatures at intervals of 10°C: 60 ± 0.2°C, 70 ± 0.2°C, 80 ± 0.2°C, and 90 ± 0.2°C. It was stated that the studied substances’ decomposition occurred in accordance with the equation for first-order reactions. The function of the logarithmic concentration (log%C) over time was revealed to be rectilinear. This dependence was used to determine the kinetics of decomposition reaction rate parameters (the rate constant of decomposition k, activation energy E a, and frequency factor A). On the basis of these parameters, the stability of the modified solution was estimated at +5°C. The results obtained show that the proposed antioxidants have a significant effect on lengthening the Celsior solution’s stability. The best results were reached when combining two antioxidants: vitamin C and cysteine in 0.5 mmol/l concentrations. As a result, the Celsior solution’s stability was lengthened from 22 to 299 days, which is 13.5 times. Vitamin C at a concentration of 0.5 mmol/l increased the solution’s stability by 5.2 times (t 90 = 115 days), cysteine at a concentration of 0.5 mmol/l caused a 4.4 times stability increase (t 90 = 96 days), and fumaric acid at a concentration of 0.5 mmol/l extended the stability by 2.1 times (t 90 = 48 days) in relation to the original solution.  相似文献   

18.
The free energy difference between two states of a molecular system separated by an energy barrier can generally be computed using the technique of umbrella sampling along a chosen reaction coordinate or pathway. The effect of a particular choice of pathway upon the obtained free energy difference is investigated by molecular dynamics simulation of a model system consisting of a glycine dipeptide in aqueous solution. Two different reaction coordinates connecting the so-called C5 and C7 conformations, one involving intramolecular hydrogen bonds and the other involving the peptide ?, ψ angles, are considered. The Gibbs free energy differences ΔG(C5 – C7) are small in both cases, 1.5 ± 1 kJ mol?1 and 2.2 ± 1 kJ mol ?1, respectively. The two different reaction coordinates yield free energy differences that are identical to within their statistical error. It is found that the exchange of solute–solute, solute–water, and water–water hydrogen bonds involves free energy changes of less than kBT, which points at the existence of a multitutde of low free energy pathways connecting the C5 and C7 dipeptide conformations. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Regulation of the concentration of osmotic solute was studied inDunaliella tertiolecta grown at an external salinity ranging between 0.5 and 1.5 mol/L NaCl. The total solute content of the cells was increased by applying 3-O-methylglucose (8 mmol/L), which was not metabolized, but accumulated at concentrations ranging between 7.5 and 12.5 μmol per mg dry mass within 2 h after its addition to the medium. 3-O-Methylglucose uptake resulted in a decreased concentration of glycerol, the solute mainly responsible for adaptation ofD. tertiolecta to high external salinity. 3-O-Methylglucose had no direct effect on the pathway of glycerol synthesis or degradation after external salinity increased or decreased, respectively. Thus, 3-O-methylglucose had no direct effects on glycerol metabolism, and it can bo assumed that it acts solely as an inert osmotic solute with the cells. 3-O-Methylglueose accumulation increased the respiration rate, as expected from an active transport.  相似文献   

20.
Purple Loosestrife is rapidly displacing native vegetation in North American wetlands. Associated changes in wetland plant communities are well understood. Effects of Loosestrife invasion on nutrient cycling and decomposition rates in affected wetlands are unknown, though potentially of significance to wetland function. We used litter bag methods to quantify decomposition rates and phosphorus concentrations of purple Loosestrife (Lythrum salicaria) and native cattails (Typha spp.) in fourteen Minnesota wetlands. A 170-day study that began in autumn modeled decomposition of Loosestrife leaves. Loosestrife stems andTypha shoots that had overwintered and fragmented were measured in a 280- day study that began in spring. In general, Loosestrife leaves decomposed most rapidly of the three;Typha shoots decomposed faster than Loosestrife stems. Significant decay coefficients (k-values) were determined by F-testing single exponential model regressions of different vegetation types in the fourteen wetlands. Significant decay coefficients were:k = 2.5 × 10−3 and 4.32 × 10−3 for all Loosestrife leaves (170 d);k = 7.2 × 10−4 and 1.11 × 10−3 for overwintered Loosestrife stems (280-d) andk = 7.9 × 10−4, 1.42 × 10−3 and 2.24 × 10−3 for overwinteredTypha shoots (280-d). Phosphorus concentrations of plant tissue showed an initial leaching followed by stabilization or increase probably associated with microbial growth. Loosestrife leaves had twice the phosphorus concentration of Loosestrife stems andTypha shoots. Our results indicate that conversion of wetland vegetation from cattails to Loosestrife may result in significant change in wetland function by altering timing of litter input and downstream phosphorus loads. Conversion of a riverine, flow- through wetland fromTypha to Loosestrife may effectively accelerate eutrophication of downstream water bodies. Impacts of Loosestrife invasion must be considered when wetlands are managed for wildlife or for improvement of downstream water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号