首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, using a genetic approach, we dissect the roles of EphB receptor tyrosine kinases in dendritic spine development. Analysis of EphB1, EphB2, and EphB3 double and triple mutant mice lacking these receptors in different combinations indicates that all three, although to varying degrees, are involved in dendritic spine morphogenesis and synapse formation in the hippocampus. Hippocampal neurons lacking EphB expression fail to form dendritic spines in vitro and they develop abnormal spines in vivo. Defective spine formation in the mutants is associated with a drastic reduction in excitatory glutamatergic synapses and the clustering of NMDA and AMPA receptors. We show further that a kinase-defective, truncating mutation in EphB2 also results in abnormal spine development and that ephrin-B2-mediated activation of the EphB receptors accelerates dendritic spine development. These results indicate EphB receptor cell autonomous forward signaling is responsible for dendritic spine formation and synaptic maturation in hippocampal neurons.  相似文献   

2.
Synaptopodin (SYNPO) is a cytoskeletal protein that is preferentially located in mature dendritic spines, where it accumulates in the spine neck and closely associates with the spine apparatus. Formation of the spine apparatus critically depends on SYNPO. To further determine its molecular action, we screened for cellular binding partners. Using the yeast two-hybrid system and biochemical assays, SYNPO was found to associate with both F-actin and alpha-actinin. Ectopic expression of SYNPO in neuronal and non-neuronal cells induced actin aggregates, thus confirming a cytoplasmic interaction with the actin cytoskeleton. Whereas F-actin association is mediated by a central SYNPO motif, binding to alpha-actinin requires the C-terminal domain. Notably, the alpha-actinin binding domain is also essential for dendritic targeting and postsynaptic accumulation of SYNPO in primary neurons. Taken together, our data suggest that dendritic spine accumulation of SYNPO critically depends on its interaction with postsynaptic alpha-actinin and that SYNPO may regulate spine morphology, motility and function via its distinct modes of association with the actin cytoskeleton.  相似文献   

3.
    
The retromer protein complex assists in recycling selected integral membrane proteins from endosomes to the trans Golgi network. One protein subcomplex (Vps35p, Vps26p and Vps29p) combines with a second (Vps17p and Vps5p) to form a coat involved in sorting and budding of endosomal vesicles. Yeast Vps35p (yVps35) exhibits similarity to human Vps35 (hVps35), especially in a completely conserved PRLYL motif contained within an amino-terminal domain. Companion studies indicate that an R(98)W mutation in yVps35 causes defective retromer assembly in Saccharomyces cerevisiae. Herein, we find that the expression of hVps35 in yeast confers dominant-negative vacuolar proenzyme secretion and defective secretory proprotein processing. The mutant phenotype appears to be driven by hVps35 competing with endogenous yVps35, becoming incorporated into defective retromer complexes and causing proteasomal degradation of endogenous Vps26 and Vps29. Increased expression of yVps35 displaces some hVps35 to a 100 000 x g supernatant and suppresses the dominant-negative phenotype. Remarkably, mutation of the conserved R(107)W of hVps35 displaces some of the protein to the 100 000 x g supernatant, slows protein turnover and restores stability of Vps26p and Vps29p and completely abrogates dominant-negative trafficking behavior. We show that hVps35 coprecipitates Vps26, whereas the R(107)W mutant does not. In pancreatic beta cells, the R(107)W mutant shifts hVps35 from peripheral endosomes to a juxtanuclear compartment, affecting both mannose phosphate receptors and insulin. These data underscore importance of the Vps35 PRLYL motif in retromer subcomplex interactions and function.  相似文献   

4.
5.
    
Cytokinesis, the final stage of the cell cycle, is an essential step toward the formation of two viable daughter cells. In recent years, membrane trafficking has been shown to be important for the completion of cytokinesis. Vesicles originating from both the endocytic and secretory pathways are known to be shuttled to the plasma membrane of the ingressing cleavage furrow, delivering membrane and proteins to this dynamic region. Advances in cell imaging have led to exciting new discoveries regarding vesicle movement in living cells. Recent work has revealed a significant role for membrane trafficking, as controlled by regulatory proteins, during cytokinesis in animal cells. The endocytic and secretory pathways as well as motor proteins are revealed to be essential in the delivery of vesicles to the cleavage furrow during cytokinesis.  相似文献   

6.
Leishmania are a group of primitive eukaryotic trypanosomatid protozoa that are apically polarized with a flagellum at their anterior end. Surrounding the base of the flagellum is the flagellar reservoir that constitutes the site for endocytosis and exocytosis in these organisms. In the present study, we define a novel multivesicular tubular compartment involved in the intracellular trafficking of macromolecules in Leishmania . This dynamic structure appears to subtend the flagellar reservoir and extends towards the posterior end of the cell. Functional domains of several surface-expressed proteins, such as the gp63 glycosyl phosphatidyl inositol anchor and the 3'nucleotidase/nuclease transmembrane domain were fused to green fluorescent protein. These chimeric proteins were found to traffic through the secretory pathway and, while reaching their intended destinations, also accumulated within the intracellular tubular compartment. Using various compounds that are efficient fluid-phase markers used to track endocytosis in higher eukaryotes, we showed that this tubular compartment constitutes an important station in the endocytic pathway of these cells. Based on our functional observations of its role in the trafficking of expressed proteins and endocytosed markers, this compartment appears to have properties similar to endosomes of higher eukaryotes.  相似文献   

7.
The Golgi apparatus in plants is organized as a multitude of individual stacks that are motile in the cytoplasm and in close association with the endoplasmic reticulum (ER) (Boevink et al. in Plant J 15:441–447, 1998). These stacks operate as a sorting centre for cargo molecules, providing modification and redirection to other organelles as appropriate. In the post-Golgi direction, these include vacuole and plasma membrane, and specialized transport routes to each are required to prevent mislocalization. Recent evidence in plant cells points to the existence of post-Golgi organelles that function as intermediate stations for efficient protein traffic, as well as to the influence of small GTPases such as Rabs and ARFs on post-Golgi trafficking. This review focuses on the latest findings on post-Golgi trafficking routes and on the involvement of GTPases and their effectors on the trafficking of proteins in the plant secretory pathway. Sally L. Hanton and Loren A. Matheson have contributed equally to this work.  相似文献   

8.
    
A variety of valuable therapeutic proteins are expressed in mammalian cells. Currently, rate-limiting for secretion of recombinant glycoproteins are activities in the secretory pathway of eukaryotic cells, i.e., folding and glycosylation of the naked polypeptide chain. In this paper we provide evidence that elevation of expression level alone is sufficient to cause intracellular aggregation of a structurally relatively simple glycoprotein, antithrombin III (ATIII). Elevation of expression level by selection for increased drug resistance in Chinese hamster ovary cells stably expressing ATIII resulted in formation of disulfide-bonded aggregates of ATIII. Aggregated ATIII displayed incomplete sialylation and Endo H-sensitivity and located to the endoplasmic reticulum and the cis-Golgi compartment in subcellular fractionations. To explore possible causes for aggregation of ATIII at elevated expression levels we investigated the influence of the two major energy sources of cultured mammalian cells, D-glucose and L-glutamine, on the ATIII-yield. We found that utilization of D-glucose was not limiting for synthesis of ATIII at elevated expression levels. However, the amount of ATIII-synthesized per L-glutamine consumed did not seem to increase steadily with expression level for ATIII, indicating that secretion of ATIII may be limited by the capacity of the cell to utilize L-glutamine.  相似文献   

9.
    
《Neuron》2022,110(24):4057-4073.e8
  1. Download : Download high-res image (263KB)
  2. Download : Download full-size image
  相似文献   

10.
11.
The secretory route in eukaryotic cells has been regarded as one common pathway from the endoplasmic reticulum (ER) through the Golgi cisternae to the trans Golgi network where recognition, sorting and exit of cargo molecules are thought to occur. Morphologically, the ribosome-coated ER is observed throughout the cytoplasm, while the Golgi apparatus usually is confined to a perinuclear position in mammalian cells. However, Golgi outposts have been observed in neuronal dendrites and dispersed Golgi elements in skeletal muscle myofibers. In insects, like in Drosophila melanogaster imaginal disc cells and epidermal cells of Tobacco and Arabidopsis leafs, individual Golgi stacks are distributed throughout the cytoplasm. Golgi stacks do not only differ in their intracellular localization but also in the number of stacks from one to several hundreds. Each stack consists of closely aligned, flattened, membrane-limited cisternae. The number of cisternae in a Golgi stack is also variable, 2-3 in some ciliates, 10 in many plant cell types and up to 30 in certain euglenoids. The yeast Saccharomyces cerevisiae has a Golgi structure of minimal complexity with scattered solitary cisternae. It is assumed that the number of Golgi cisternae reflects the overall complexity of the enzymatic reactions that occur in their lumen, while the number of stacks reflects the load of macromolecules arriving at the cis side. In this review, we will focus on how the available morphological and biochemical data fit with the current view of protein sorting in the secretory pathway, particularly in polarized cells like neuronal and epithelial cells.  相似文献   

12.
  总被引:5,自引:2,他引:5  
Autophagy is a survival mechanism necessary for eukaryotic cells to overcome nutritionally challenged environments. When autophagy is triggered, cells degrade nonselectively engulfed cytosolic proteins and free ribosomes that are evenly distributed throughout the cytoplasm. The resulting pool of free amino acids is used to sustain processes crucial for survival. Here we characterize an autophagic degradation of the endoplasmic reticulum (ER) under starvation conditions in addition to cytosolic protein degradation. Golgi membrane protein was not engulfed by the autophagosome under the same conditions, indicating that the uptake of ER by autophagosome was the specific event. Although the ER exists in a network structure that is mutually connected and resides predominantly around the nucleus and beneath the plasma membrane, most of autophagosome engulfed ER. The extent of the ER uptake by autophagy was nearly identical to that of the soluble cytosolic proteins. This phenomenon was explained by the appearance of fragmented ER membrane structures in almost all autophagosomes. Furthermore, ER dynamism is required for this process: ER uptake by autophagosomes occurs in an actin-dependent manner.  相似文献   

13.
It is clear that de novo protein synthesis has an important function in synaptic transmission and plasticity. A substantial amount of work has shown that mRNA translation in the hippocampus is spatially controlled and that dendritic protein synthesis is required for different forms of long‐term synaptic plasticity. More recently, several studies have highlighted a function for protein degradation by the ubiquitin proteasome system in synaptic plasticity. These observations suggest that changes in synaptic transmission involve extensive regulation of the synaptic proteome. Here, we review experimental data supporting the idea that protein homeostasis is a regulatory motif for synaptic plasticity.  相似文献   

14.
The actin cytoskeleton in dendritic spines is organized into microdomains, but how signaling molecules that regulate actin are spatially governed is incompletely understood. Here we examine how the localization of the RacGEF kalirin-7, a well-characterized regulator of actin in spines, varies as a function of post-synaptic density area and spine volume. Using serial section electron microscopy, we find that extrasynaptic, but not synaptic, expression of kalirin-7 varies directly with synapse size and spine volume. Moreover, we find that overall expression levels of kalirin-7 differ in spines bearing perforated and non-perforated synapses, due primarily to extrasynaptic pools of kalirin-7 expression in the former. Overall, our findings indicate that kalirin-7 is differentially compartmentalized in spines as a function of both synapse morphology and spine size.  相似文献   

15.
Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super‐resolution imaging, we revealed the nanoscale organization and dynamics of branched F‐actin regulators in spines. Branched F‐actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger‐like protrusions. This spatial segregation differs from lamellipodia where both branched F‐actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin‐like protein‐2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F‐actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free‐diffusion on the membrane. Enhanced Rac1 activation and Shank3 over‐expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F‐actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity.  相似文献   

16.
    
The secretory pathway is of vital importance for eukaryotic cells and has a pivotal role in the synthesis, sorting, processing and secretion of a large variety of bioactive molecules involved in intercellular communication. One of the key processes in the secretory pathway concerns the transport of cargo proteins from the ER (endoplasmic reticulum) to the Golgi. Type‐I transmembrane proteins of ~24 kDa are abundantly present in the membranes of the early secretory pathway, and bind the COPI and COPII coat complexes that cover vesicles travelling between the membranes. These p24 proteins are thought to play an important role in the selective transport processes at the ER—Golgi interface, although their exact functioning is still obscure. One model proposes that p24 proteins couple cargo selection in the lumen with vesicle coat recruitment in the cytosol. Alternatively, p24 proteins may furnish subcompartments of the secretory pathway with the correct subsets of machinery proteins. Here we review the current knowledge of the p24 proteins and the various roles proposed for the p24 family members.  相似文献   

17.
Nedd4 is a ubiquitin protein ligase (E3) containing a C2 domain, three or four WW domains, and a ubiquitin ligase HECT domain. We have shown previously that the C2 domain of Nedd4 is responsible for its Ca(2+)-dependent targeting to the plasma membrane, particularly the apical region of epithelial MDCK cells. To investigate this apical preference, we searched for Nedd4-C2 domain-interacting proteins that might be involved in targeting Nedd4 to the apical surface. Using immobilized Nedd4-C2 domain to trap interacting proteins from MDCK cell lysate, we isolated, in the presence of Ca(2+), a approximately 35-40-kD protein that we identified as annexin XIII using mass spectrometry. Annexin XIII has two known isoforms, a and b, that are apically localized, although XIIIa is also found in the basolateral compartment. In vitro binding and coprecipitation experiments showed that the Nedd4-C2 domain interacts with both annexin XIIIa and b in the presence of Ca(2+), and the interaction is direct and optimal at 1 microM Ca(2+). Immunofluorescence and immunogold electron microscopy revealed colocalization of Nedd4 and annexin XIIIb in apical carriers and at the apical plasma membrane. Moreover, we show that Nedd4 associates with raft lipid microdomains in a Ca(2+)-dependent manner, as determined by detergent extraction and floatation assays. These results suggest that the apical membrane localization of Nedd4 is mediated by an association of its C2 domain with the apically targeted annexin XIIIb.  相似文献   

18.
    
Zinc (Zn2+) is believed to play a relevant role in the physiology and pathophysiology of the brain. Hence, Zn2+ homeostasis is critical and involves different classes of molecules, including Zn2+ transporters. The ubiquitous Zn2+ transporter‐1 (ZNT‐1) is a transmembrane protein that pumps cytosolic Zn2+ to the extracellular space, but its function in the central nervous system is not fully understood. Here, we show that ZNT‐1 interacts with GluN2A‐containing NMDA receptors, suggesting a role for this transporter at the excitatory glutamatergic synapse. First, we found that ZNT‐1 is highly expressed at the hippocampal postsynaptic density (PSD) where NMDA receptors are enriched. Two‐hybrid screening, coimmunoprecipitation experiments and clustering assay in COS‐7 cells demonstrated that ZNT‐1 specifically binds the GluN2A subunit of the NMDA receptor. GluN2A deletion mutants and pull‐down assays indicated GluN2A(1390–1464) domain as necessary for the binding to ZNT‐1. Most importantly, ZNT‐1/GluN2A complex was proved to be dynamic, since it was regulated by induction of synaptic plasticity. Finally, modulation of ZNT‐1 expression in hippocampal neurons determined a significant change in dendritic spine morphology, PSD‐95 clusters and GluN2A surface levels, supporting the involvement of ZNT‐1 in the dynamics of excitatory PSD.

  相似文献   


19.
20.
The higher plant Golgi apparatus, comprising many individual stacks of membrane bounded cisternae, is one of the most enigmatic of the cytoplasmic organelles. Not only can the stacks receive material from the endoplasmic reticulum, process it and target it to the correct cellular destination, but they can also synthesise and export complex carbohydrates and lipids and most likely act as one end point of the endocytic pathway. In many cells such processing and sorting can take place while the stacks are moving within the cytoplasm and, remarkably, the organelle manages to retain its structural integrity. This review considers some of the latest data and views on transport both to and from the Golgi and the mechanisms by which such activity is regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号