首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: Interchain beta-sheet (ICBS) interactions occur widely in protein quaternary structures, interactions between proteins and protein aggregation. These interactions play a central role in many biological processes and in diseases ranging from AIDS and cancer to anthrax and Alzheimer's. RESULTS: We have created a comprehensive database of ICBS interactions that is updated on a weekly basis and allows entries to be sorted and searched by relevance and other criteria through a simple Web interface. We derive a simple ICBS index to quantify the relative contributions of the beta-ladders in the overall interchain interaction and compute first- and second-order statistics regarding amino acid composition and pairing at different relative positions in the beta-strands. Analysis of the database reveals a 15.8% prevalence of significant ICBS interactions, the majority of which involve the formation of antiparallel beta-sheets and many of which involve the formation of dimers and oligomers. The frequencies of amino acids in ICBS interfaces are similar to those in intrachain beta-sheet interfaces. A full range of non-covalent interactions between side chains complement the hydrogen-bonding interactions between the main chains. Polar amino acids pair preferentially with polar amino acids and non-polar amino acids pair preferentially with non-polar amino acids among antiparallel (i, j) pairs. We anticipate that the statistics and insights gained from the database will guide the development of agents that control interchain beta-sheet interactions and that the database will help identify new protein interactions and targets for these agents. AVAILABILITY: The database is available at: http://www.igb.uci.edu/servers/icbs/  相似文献   

2.
We have explored human aqueous tear fluid lipidome with an emphasis to identify the major lipids. We also address the physiological significance of the lipidome. The tears were analysed using thin layer chromatographic, enzymatic and mass spectrometric techniques. To emphasize the physiological aspect of the lipidome, we modelled the spreading of the non-polar tear fluid lipids at air-water interface in macroscopic scale with olive oil and egg yolk phosphatidylcholine. Based on enzymatic analysis the respective concentrations of choline-containing lipids, triglycerides, and cholesteryl esters were 48±14, 10±0, and 21±18 μM. Ultra performance liquid chromatography quadrupole time of flight mass spectrometry analysis showed that phosphatidylcholine and phosphatidylethanolamine were the two most common polar lipids comprising 88±6% of all identified lipids. Triglycerides were the only non-polar lipids detected in mass spectrometric analysis i.e. no cholesteryl or wax esters were identified. The spreading experiments show that the presence of polar lipids is an absolute necessity for a proper spreading of non-polar tear fluid lipids. We provide evidence that polar lipids are the most common lipid species. Furthermore, we provide a physiological rationale for the observed lipid composition. The results open insights into the functional role of lipids in the tear fluid and also aids in providing new means to understand and treat diseases of the ocular surface.  相似文献   

3.
The surface activity and enzymic properties of the factor F1, the catalytic moiety of Streptococcus faecalis H+-ATPase, has been studied at the air-water and phospholipid-water interfaces. F1 does not interact with the monolayer phospholipids, hence its adsorption on a biological membrane must be due mainly to its recognition of proteins of the hydrophobic complex. The dimensions of the F1 molecule at the air-water interface have been estimated. In the presence of Mg2+, base area is S = 1.8 . 10(4) A2, height h = 27 A. Bearing in mind the size of a globular subunit, it follows from the measurements that the major F1 subunits should all lie in the same plane. The ATPase activity of F1 at the interface is inversely proportional to the monolayer density. With low density monolayer, the specific ATPase activity is higher at the interface than in the bulk of the solution. Adsorption of F1 at the interface shifts the isoelectric point of tiscussed relative to the proton-active transport mechanism.  相似文献   

4.
We have systematically characterized, by aqueous column chromatography on a size exclusion cross-linked dextran gel (Sephadex G-10), 12 solutes, 11 of which are known to affect protein stability. Six are chaotropes (water structure breakers) and destabilize proteins, while five are polar kosmotropes (polar water structure makers) and stabilize proteins. Analysis of the chromatographic behavior of these neutral (ethylene glycol, urea), positively charged (Tris, guanidine, as the hydrochloride salts) and negatively charged (SO2-4, HPO2-4, F-, Cl-, Br-, Cl3CCO-2, I-, SCN-, as the sodium salts, in order of elution) solutes at pH 7 as a function of sample concentration (up to 0.6 M), supporting electrolyte, and temperature yields four conclusions, based largely on the behavior of the anions. Chaotropes adsorb to the gel according to their position in the Hofmeister series, with the most chaotropic species adsorbing most strongly. ++Chaotropes adsorb to the gel less strongly in the presence of chaotropes (a salting in effect) and more strongly in the presence of polar kosmotropes (a salting out effect). Polar kosmotropes do not adsorb to the gel, and are sieved through the gel according to their position in the Hofmeister series, with the most kosmotropic species having the largest relative hydrodynamic radii. The hydrodynamic radii of polar kosmotropes is increased by chaotropes and decreased by polar kosmotropes. These results suggest that a chaotrope interacts with the first layer of immediately adjacent water molecules somewhat less strongly than would bulk water in its place; a polar kosmotrope, more strongly.  相似文献   

5.
The surfactant properties of aqueous protein mixtures (ranaspumins) from the foam nests of the tropical frog Physalaemus pustulosus have been investigated by surface tension, two-photon excitation fluorescence microscopy, specular neutron reflection, and related biophysical techniques. Ranaspumins lower the surface tension of water more rapidly and more effectively than standard globular proteins under similar conditions. Two-photon excitation fluorescence microscopy of nest foams treated with fluorescent marker (anilinonaphthalene sulfonic acid) shows partitioning of hydrophobic proteins into the air-water interface and allows imaging of the foam structure. The surface excess of the adsorbed protein layers, determined from measurements of neutron reflection from the surface of water utilizing H(2)O/D(2)O mixtures, shows a persistent increase of surface excess and layer thickness with bulk concentration. At the highest concentration studied (0.5 mg ml(-1)), the adsorbed layer is characterized by three distinct regions: a protruding top layer of approximately 20 angstroms, a middle layer of approximately 30 angstroms, and a more diffuse submerged layer projecting some 25 angstroms into bulk solution. This suggests a model involving self-assembly of protein aggregates at the air-water interface in which initial foam formation is facilitated by specific surfactant proteins in the mixture, further stabilized by subsequent aggregation and cross-linking into a multilayer surface complex.  相似文献   

6.
The N-terminal domain of the Tn916 integrase protein (INT-DBD) is responsible for DNA binding in the process of strand cleavage and joining reactions required for transposition of the Tn916 conjugative transposon. Site-specific association is facilitated by numerous protein-DNA contacts from the face of a three-stranded beta-sheet inserted into the major groove. The protein undergoes a subtle conformational transition and is slightly unfolded in the protein-DNA complex. The conformation of many charged residues is poorly defined by NMR data but mutational studies have indicated that removal of polar side chains decreases binding affinity, while non-polar contacts are malleable. Based on analysis of the binding enthalpy and binding heat capacity, we have reasoned that dehydration of the protein-DNA interface is incomplete. This study presents results from a molecular dynamics investigation of the INT-DBD-DNA complex aimed at a more detailed understanding of the role of conformational dynamics and hydration in site-specific binding. Comparison of simulations (total of 13 ns) of the free protein and of the bound protein conformation (in isolation or DNA-bound) reveals intrinsic flexibility in certain parts of the molecule. Conformational adaptation linked to partial unfolding appears to be induced by protein-DNA contacts. The protein-DNA hydrogen-bonding network is highly dynamic. The simulation identifies protein-DNA interactions that are poorly resolved or only surmised from the NMR ensemble. Single water molecules and water clusters dynamically optimize the complementarity of polar interactions at the 'wet' protein-DNA interface. The simulation results are useful to establish a qualitative link between experimental data on individual residue's contribution to binding affinity and thermodynamic properties of INT-DBD alone and in complex with DNA.  相似文献   

7.
Monomolecular films of valine gramicidin A (VGA) were investigated in situ at the air-water interface by x-ray reflectivity and x-ray grazing incidence diffraction as well as polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). These techniques were combined to obtain information on the secondary structure and the orientation of VGA and to characterize the shoulder observed in its pi-A isotherm. The thickness of the film was obtained by x-ray reflectivity, and the secondary structure of VGA was monitored using the frequency position of the amide I band. The PM-IRRAS spectra were compared with the simulated ones to identify the conformation adopted by VGA in monolayer. At large molecular area, VGA shows a disordered secondary structure, whereas at smaller molecular areas, VGA adopts an anti-parallel double-strand intertwined beta(5.6) helical conformation with 30 degrees orientation with respect to the normal with a thickness of 25 A. The interface between bulk water and the VGA monolayer was investigated by x-ray reflectivity as well as by comparing the experimental and the simulated PM-IRRAS spectra on D(2)O and H(2)O, which suggested the presence of oriented water molecules between the bulk and the monolayer.  相似文献   

8.
An investigation of protein subunit and domain interfaces   总被引:14,自引:0,他引:14  
Protein structures were collected from the Brookhaven Database of tertiary architectures that displayed oligomeric association (24 molecules) or whose polypeptide folding revealed domains (34 proteins). The subunit and domain interfaces for these proteins were respectively examined from the following aspects: percentage water-accessible surface area buried by the respective associations, surface compositions and physical characteristics of the residues involved in the subunit and domain contacts, secondary structural state of the interface amino acids, preferred polar and non-polar interactions, spatial distribution of polar and non-polar residues on the interface surface, same residue interactions in the oligomeric contacts, and overall cross-section and shape of the contact surfaces. A general, consistent picture emerged for both the domain and subunit interfaces.  相似文献   

9.
The spatial spread of altruism versus the evolutionary response of egoists   总被引:2,自引:0,他引:2  
Several recent models have shown that altruism can spread in viscous populations, i.e. in spatially structured populations within which individuals interact only with their immediate neighbours and disperse only over short distances. I first confirm this result with an individual-based model of a viscous population, where an individual can vary its level of investment into a behaviour that is beneficial to its neighbours but costly to itself. Two distinct classes of individuals emerge: egoists with no or very little investment into altruism, and altruists with a high level of investment; intermediate levels of altruism are not maintained. I then extend the model to investigate the consequences of letting interaction and dispersal distances evolve along with altruism. Altruists maintain short distances, while the egoists respond to the spread of altruism by increasing their interaction and dispersal distances. This allows the egoistic individuals to be maintained in the population at a high frequency. Furthermore, the coevolution of investment into altruism and interaction distance can lead to a stable spatial pattern, where stripes of altruists (with local interactions) alternate with stripes of egoists (with far-reaching interactions). Perhaps most importantly, this approach shows that the ease with which altruism spreads in viscous populations is maintained despite countermeasures evolved by egoists.  相似文献   

10.
Since Kauzmann's seminal 1959 paper, the hydrophobic interaction has dominated thinking on the forces that control protein folding and stability. Despite its wide importance in chemistry and biology, our understanding of this interaction at the molecular level remains poor, with little experimental evidence to support the idea of water ordering close to a non-polar group that is at the centre of the standard model for the source of the entropic driving force. Developments over recent years in neutron techniques now enable us to see directly how a non-polar group actually affects the molecular structure of the water in its immediate neighbourhood. On the basis of such work on aqueous solutions of small alcohols, the generally accepted standard model is found to be wanting, and alternative sources of the entropic driving force are suggested. Moreover, the fact that we can now follow changes in hydrogen bonding as the alcohol concentration is varied gives us the possibility of explaining the concentration dependence of the enthalpy of mixing. Complementary studies of solute association on the mesoscopic scale show a rich concentration and temperature behaviour, which reflects a complex balance of polar and non-polar interactions. Unravelling the detailed nature of this balance in simple aqueous amphiphiles may lead to a better understanding of the forces that control biomolecular structural stability and interactions.  相似文献   

11.
Surface pressure isotherms and structural and surface dilatational properties of three hydroxypropylmethycelluloses (HPMCs, called E4M, E50LV, and F4M) adsorbed films at the air-water interface were determined. In this work we present evidence that HPMC molecules are able to diffuse and saturate the air-water interface at very low concentrations in the bulk phase. As bulk concentration increased, structural changes at a molecular level occurred at the interface. These changes corresponded to transition from an expanded structure (structure I) to a condensed one (structure II). When the surface concentration of HPMC was high enough, the collapse of the monolayer was observed. The three HPMCs formed very elastic films at the air-water interface, even at low surface pressures. E4M showed features that make it unique. For instance it showed the highest surface activity, mainly at low bulk concentrations (<10(-4) wt %). The differences observed in surface activity may be attributed to differences in the hydroxypropyl molar substitution and molecular weight of HPMC. All three HPMCs formed films of similar viscoelasticity and elastic dilatational modulus, which can be accounted for by their similar degree of methyl substitution.  相似文献   

12.
The transmembrane helix of glycophorin A contains a seven-residue motif, LIxxGVxxGVxxT, that mediates protein dimerization. Threonine is the only polar amino acid in this motif with the potential to stabilize the dimer through hydrogen-bonding interactions. Polarized Fourier transform infrared spectroscopy is used to establish a robust protocol for incorporating glycophorin A transmembrane peptides into membrane bilayers. Analysis of the dichroic ratio of the 1655-cm(-1) amide I vibration indicates that peptides reconstituted by detergent dialysis have a transmembrane orientation with a helix crossing angle of <35 degrees. Solid-state nuclear magnetic resonance spectroscopy is used to establish high resolution structural restraints on the conformation and packing of Thr-87 in the dimer interface. Rotational resonance measurement of a 2.9-A distance between the gamma-methyl and backbone carbonyl carbons of Thr-87 is consistent with a gauche- conformation for the chi1 torsion angle. Rotational-echo double-resonance measurements demonstrate close packing (4.0 +/- 0.2 A) of the Thr-87 gamma-methyl group with the backbone nitrogen of Ile-88 across the dimer interface. The short interhelical distance places the beta-hydroxyl of Thr-87 within hydrogen-bonding range of the backbone carbonyl of Val-84 on the opposing helix. These results refine the structure of the glycophorin A dimer in membrane bilayers and highlight the complementary role of small and polar residues in the tight association of transmembrane helices in membrane proteins.  相似文献   

13.
Protein–protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure‐based drug design methods, as well as design of de novo binders with preferred interaction properties. At a structural and molecular level, interface and rim regions are not enough to fully account for the energetics of protein–protein binding, even for simple lock‐and‐key rigid binders. As we have recently shown, properties of the global surface might also play a role in protein–protein interactions. Here, we report on molecular dynamics simulations performed to understand solvent effects on protein–protein surfaces. We compare properties of the interface, rim, and non‐interacting surface regions for five different complexes and their free components. Interface and rim residues become, as expected, less mobile upon complexation. However, non‐interacting surface appears more flexible in the complex. Fluctuations of polar residues are always lower compared with charged ones, independent of the protein state. Further, stable water molecules are often observed around polar residues, in contrast to charged ones. Our analysis reveals that (a) upon complexation, the non‐interacting surface can have a direct entropic compensation for the lower interface and rim entropy and (b) the mobility of the first hydration layer, which is linked to the stability of the protein–protein complex, is influenced by the local chemical properties of the surface. These findings corroborate previous hypotheses on the role of the hydration layer in shielding protein–protein complexes from unintended protein–protein interactions. Proteins 2015; 83:445–458. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The chemical moieties during biofilm formation of Pseudomonas aeruginosa on aluminium plates were examined for a period of 17 days. The effect of fluid shearing upon biofilm formation has also been investigated. The Fourier transform infrared (FTIR) spectrum of the biofilm taken on the fifth day showed significant differences compared with the spectrum of the unattached bacterial cells, indicating that structural changes or modifications of the cell envelope had taken place during the development of the biofilm. Major changes were also observed in the spectrum during the subsequent development of the biofilm from day 5 to day 17. The increasing intensity of a band corresponding to the symmetric stretching mode of the carboxyl group indicated interactions between the carboxyl group and the aluminium surface. Increased bacterial colonization was also observed at the air-water interface of the aluminium plates when compared with the middle and the bottom parts. Changes in FTIR spectra of the biofilm at the bottom, at the middle, and at the air-water interface suggest that the mechanisms of bacterial attachment differed by a -COO(-) interaction at the air-water interface, and by both -COO(-) and NH3(+) groups beneath the water surface.  相似文献   

15.
Hydrophobins are a class of small proteins that fulfill a wide spectrum of functions in fungal growth and development. They do so by self-assembling into an amphipathic membrane at hydrophilic-hydrophobic interfaces. The SC3 hydrophobin of Schizophyllum commune is the best-studied hydrophobin. It assembles at the air-water interface into a membrane consisting of functional amyloid fibrils that are called rodlets. Here we examine the dynamics of SC3 assembly at an oil-water and air-water interface and the permeability characteristics of the assembled layer. Hydrophobin assembled at an oil-water interface is a dynamic system capable of emulsifying oil. It accepts soluble-state SC3 oligomers from water in a unidirectional process and sloughs off SC3 vesicles back into the water phase enclosing a portion of the oil phase in their hydrophobic interior. The assembled layer is impermeable to solutes >200 Da from either the water phase or the oil phase; however, due to the emulsification process, oil and the hydrophobic marker molecules in the oil phase can be transferred into the water phase, thus giving the impression that the assembled layer is permeable to the marker molecules. By contrast, the layer assembled at an air-water interface is permeable to water vapor from either the hydrophobic or hydrophilic side.  相似文献   

16.
Effects of amino acid substitutions at four fully buried sites of the ubiquitin molecule on the thermodynamic parameters (enthalpy, Gibbs energy) of unfolding were evaluated experimentally using differential scanning calorimetry. The same set of substitutions has been incorporated at each of four sites. These substitutions have been designed to perturb packing (van der Waals) interactions, hydration, and/or hydrogen bonding. From the analysis of the thermodynamic parameters for these ubiquitin variants we conclude that: (i) packing of non-polar groups in the protein interior is favorable and is largely defined by a favorable enthalpy of van der Waals interactions. The removal of one methylene group from the protein interior will destabilize a protein by approximately 5 kJ/mol, and will decrease the enthalpy of a protein by 12 kJ/mol. (ii) Burial of polar groups in the non-polar interior of a protein is highly destabilizing, and the degree of destabilization depends on the relative polarity of this group. For example, burial of Thr side-chain in the non-polar interior will be less destabilizing than burial of Asn side-chain. This decrease in stability is defined by a large enthalpy of dehydration of polar groups upon burial. (iii) The destabilizing effect of dehydration of polar groups upon burial can be compensated if these buried polar groups form hydrogen bonding. The enthalpy of this hydrogen bonding will compensate for the unfavorable dehydration energy and as a result the effect will be energetically neutral or even slightly stabilizing.  相似文献   

17.
Y K Cheng  P J Rossky 《Biopolymers》1999,50(7):742-750
The use of a linear relationship between free energy of hydrophobic hydration and solvent-accessible apolar surface area has been helpful in interpreting the thermodynamics of biological macromolecules. However, a recent study (Y.-K. Cheng, P. J. Rossky, Nature 1998, Vol. 392, pp. 696-699) has established a substantial enthalpic dependence on biomolecular surface topography, originating from solvent hydrogen-bonding loss in a restrictive geometry. In this study, we use molecular dynamics simulations of 2-Zn insulin in water solvent to explore the further effect of vicinal polar or charged groups on hydrophobic hydration at a biomolecular surface. In contrast to the case for solvent more isolated from such polar solute influences, the binding energies of the water that is proximal to the hydrophobic dimeric interface of insulin and vicinal to polar and charged groups are comparable to the bulk solvent value, a result of compensating interaction primarily with the solute counterions. The results suggest a special importance for such polar/charged groups in biological processes involving hydrophobic surface regions of restricted geometry and also suggest a general route for tuning the hydrophobicity of interfaces.  相似文献   

18.
The behaviour of N-hexadecanoylsphingosine (Cer16), N-hexanoylsphingosine (Cer6) and N-acetylsphingosine (Cer2) in aqueous media and in lipid-water systems, monolayers and bilayers has been comparatively examined using Langmuir balance and fluorescence techniques. Cer16 behaves as an insoluble non-swelling amphiphile, not partitioning into the air-water interface, thus not modifying the surface pressure of the aqueous solutions into which it is included. By contrast both Cer6 and Cer2 behave as soluble amphiphiles, up to approx. 100 microM. At low concentrations, they become oriented at the air-water interface, increasing surface pressure in a dose-dependent way up to ca. 5 microM bulk concentration. At higher concentrations, the excess ceramide forms micelles, critical micellar concentrations of both Cer6 and Cer2 being in the 5-6 microM range. When the air-water interface is occupied by a phospholipid, 6Cer2 and Cer6 become inserted in the phospholipid monolayer, causing a further increase in surface pressure. This increase is dose dependent, and reaches a plateau at ca. 2 microM ceramide bulk concentration. Both Cer2 and Cer6 become inserted in phospholipid monolayers with initial surface pressures of up to 43 and 46 mN m(-1), respectively, which ensures their capacity to become inserted into cell membranes whose monolayers are estimated to support a surface pressure of about 30 mN m(-1). Both Cer2 and Cer6, but not Cer16, had detergent-like properties, such as giving rise to phospholipid-ceramide mixed micelles, when added to phospholipid monolayers or bilayers. The short-chain ceramides form large aggregates and precipitate at concentrations above approx. 100 microM. These results are relevant in cell physiology studies in which short- and long-chain ceramides are sometimes used as equivalent molecules, in spite of their different biophysical behaviour.  相似文献   

19.
A novel method for the acquisition of surface enhanced Raman (SER) spectra of model membranes of dipalmitoylphosphatidic acid (DPPA) in Langmuir layers at the air-water interface is reported. The approach is based on the electrochemical formation of a buoyant thin layer of coalesced silver colloids in the vicinity of the phosphatidic acid head groups at the interface. This Ag layer is an excellent platform for SER scattering, which shows the spectral features from all parts of the molecule and water between the Ag surface and the DPPA layer. The observation of the spectral response from the phosphatidic acid head groups is of particular significance, allowing insight into their chemical state and orientation at the air-water interface.  相似文献   

20.
We study the phase behavior of phage phiX174 single-stranded DNA in very dilute solutions in the presence of monovalent and multivalent salts, in both water (H(2)O) and heavy water (D(2)O). DNA solubility depends on the nature of the salts, their concentrations, and the nature of the solvent. The appearance of attractive interactions between the monomers of the DNA chains in the bulk of the solution is correlated with an adsorption of the chains at the air-water interface. We characterize this correlation in two types of aggregation processes: the condensation of DNA induced by the trivalent cation spermidine and its salting out in the presence of high concentrations (molar and above) of monovalent (sodium) cations, both in water and in heavy water. The overall solubility of single-stranded DNA is decreased in D(2)O compared to H(2)O, pointing to a role of DNA hydration in addition to electrostatic factors in the observed phase separations. DNA adsorption involves attractive van der Waals forces, and these forces are also operating in the bulk aggregation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号