首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The synthesis of poly(A)-containing RNA in outgrowing spores of Bacillus subtilis was studied. A significant amount of RNA puls-labelled with 3H-uridine is polyadenylated. With the beginning of RNA synthesis in outgrowing spores labelled poly(A)-containing RNA was detected. The amount of poly(A)-RNA during the outgrowth and first cell division remains constant. Besides poly(A)-RNA the synthesis of tRNA and rRNA occurs. These results indicate a simultaneous activation of synthesis of tRNA, rRNA as well as of poly(A)-containing RNA during outgrowth of B. subtilis spores.  相似文献   

3.
4.
In this report, we have compared the changes in the production of tRNA(iMet) (initiator tRNA(Met] and tRNA(Asn), which occur during erythroid differentiation in the Friend erythroleukemia cell. The relative steady-state concentration of these two tRNAs (relative to the total tRNA population) was measured by aminoacylation. The results show that while the relative steady-state concentration of tRNA(iMet) changes very little in the cytoplasmic tRNA population, the relative concentration of tRNA(Asn) decreases during the first two days of differentiation and then undergoes an increase. This difference in the behavior of these two tRNAs is also seen when their relative concentrations in newly synthesized tRNA is examined. When tRNA is labeled with tritiated uridine for 24 h in vivo prior to isolation, the hybridization of this labeled tRNA to filter-bound tRNA genes shows that the relative concentration of tRNA(iMet) in newly synthesized tRNA changes very little, while the relative concentration of newly synthesized tRNA(Asn) again decreases through the first 2 days of differentiation, and then undergoes a smaller increase. Thus, the production of these two tRNAs appears to be independently regulated. Independent regulation of synthesis is also observed when examining the production of these two tRNAs in isolated nuclei. During erythroid differentiation, the relative synthesis of tRNA(iMet) (relative to total nuclear RNA synthesis) remains constant, while the relative synthesis of tRNA(Asn) undergoes periodic increases and decreases in value.  相似文献   

5.
6.
The effect of various tRNAs on protein synthesis was investigated using a tRNA-dependent cell-free system from Ehrlich ascites cells. Ascites cell tRNA and rabbit liver tRNA were found to promote efficient translation of globin mRNA, oviduct mRNA, and encephalomycarditis (EMC) viral RNA. In contrast, reticulocyte tRNA participated efficiently only in the translation of globin mRNA; the translation of oviduct mRNA AND EMC viral RNA in the presence of reticulocyte tRNA resulted in the synthesis of relatively few large mature proteins and the accumulation of discrete, smaller polypeptides. These results suggest that isoaccepting tRNA species required for the synthesis of ovalbumin and EMC viral protein (but not hemoglobin) are probably functionally absent in reticulocyte tRNA, causing a premature, nonrandom termination of synthesis of these proteins. This provides preliminary evidence that variations in tRNA populations, frequently observed between different cell types, are large enough to define and perhaps regulate the proteins that the cell is capable of synthesizing.  相似文献   

7.
The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors.  相似文献   

8.
The ribosome undergoes pronounced periodic conformational changes during protein synthesis. Of particular importance are those occurring around the decoding site, the region of the 16 S rRNA interacting with the mRNA-(tRNA)(2) complex. We have incorporated structural information from X-ray crystallography and nuclear magnetic resonance into cryo-electron microscopic maps of ribosomal complexes designed to capture structural changes at the translocation step of the polypeptide elongation cycle. The A-site region of the decoding site actively participates in the translocation of the tRNA from the A to the P-site upon GTP hydrolysis by elongation factor G, shifting approximately 8 A toward the P-site. This implies that elongation factor G actively pushes both the decoding site and the mRNA/tRNA complex during translocation.  相似文献   

9.
10.
Unbudded singlets from exponentially growing yeast cells of Sporothrix schenckii were harvested, selected by filtration and allowed to form germ tubes in a basal medium with glucose at pH 4.0 and 25 degrees C. These conditions supported only the development of the mycelial form of S. schenckii in a reproducible manner which allowed further analysis of the early cellular events occurring during the yeast-to-mycelium transition. The relationship between macromolecular synthesis (DNA and RNA synthesis) and nuclear division, hyphal growth and septum formation were investigated during germ tube formation. RNA synthesis started 0 to 3 h after the induction of germ tube formation, followed by DNA synthesis and the first nuclear division, which took place between 3 and 6 h. Germ tube formation followed nuclear division and was first evidenced 6 h after the induction of germ tube formation, but was not completed until 12 h after inoculation. Septation was first observed in these germ tubes at the mother cell-germ tube junction 6 h after induction. Addition of hydroxyurea, an inhibitor of DNA synthesis, to the medium, also inhibited nuclear division and germ tube growth, suggesting that these processes in S. schenckii are dependent upon DNA synthesis.  相似文献   

11.
Aminoacyl-tRNA synthetases, essential components of the cytoplasmic translation apparatus, also have nuclear functions that continue to be elucidated. However, little is known about how the distribution between cytoplasmic and nuclear compartments is controlled. Using a combination of methods, here we showed that human tyrosyl-tRNA synthetase (TyrRS) distributes to the nucleus and that the nuclear import of human TyrRS is regulated by its cognate tRNA(Tyr). We identified a hexapeptide motif in the anticodon recognition domain that is critical for nuclear import of the synthetase. Remarkably, this nuclear localization signal (NLS) sequence motif is also important for interacting with tRNA(Tyr). As a consequence, mutational alteration of the hexapeptide simultaneously attenuated aminoacylation and nuclear localization. Because the NLS is sterically blocked when the cognate tRNA is bound to TyrRS, we hypothesized that the nuclear distribution of TyrRS is regulated by tRNA(Tyr). This expectation was confirmed by RNAi knockdown of tRNA(Tyr) expression, which led to robust nuclear import of TyrRS. Further bioinformatics analysis showed that to have nuclear import of TyrRS directly controlled by tRNA(Tyr) in higher organisms, the NLS of lower eukaryotes was abandoned, whereas the new NLS was evolved from an anticodon-binding hexapeptide motif. Thus, higher organisms developed a strategy to make tRNA a regulator of the nuclear trafficking of its cognate synthetase. The design in principle should coordinate nuclear import of a tRNA synthetase with the demands of protein synthesis in the cytoplasm.  相似文献   

12.
alpha-Amanitin acts in vitro and in vivo as a selective inhibitor of nucleoplasmic RNA polymerases. Treatment of mice with low doses of alpha-amanitin causes the following changes in the synthesis, maturation and nucleocytoplasmic transfer of liver RNA species. 1. The synthesis of the nuclear precursor of mRNA is strongly inhibited and all electrophoretic components are randomly affected. The labelling of cytoplasmic mRNA is blocked. These effects may be correlated with the rapid and lasting inhibition of nucleoplasmic RNA polymerase. 2. The synthesis and maturation of the nuclear precursor of rRNA is inhibited within 30min. (a) The initial effect is a strong (about 80%) inhibition of the early steps of 45S precursor rRNA maturation. (b) The synthesis of 45S precursor rRNA is also inhibited and the effect increases from about 30% at 30min to more than 70% at 150min. (c) The labelling of nuclear and cytoplasmic 28S and 18S rRNA is almost completely blocked. The labelling of nuclear 5S rRNA is inhibited by about 50%, but that of cytoplasmic 5S rRNA is blocked. (d) The action of alpha-amanitin on the synthesis of precursor rRNA cannot be correlated with the slight gradual decrease of nucleolar RNA polymerase activity (only 10-20% inhibition at 150min). (e) The inhibition of precursor rRNA maturation and synthesis precedes the ultrastructural lesions of the nucleolus detected by standard electron microscopy. 3. The synthesis of nuclear 4.6S precursor of tRNA is not affected by alpha-amanitin. However, the labelling of nuclear and cytoplasmic tRNA is decreased by about 50%, which indicates an inhibition of precursor tRNA maturation. The results of this study suggest that the synthesis and maturation of the precursor of rRNA and the maturation of the precursor of tRNA are under the control of nucleoplasmic gene products. The regulator molecules may be either RNA or proteins with exceedingly fast turnover.  相似文献   

13.
14.
The synthesis of diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) can be catalyzed in vitro by a tetrameric tRNA synthetase complex from rat liver containing two lysyl-tRNA synthetase and two arginyl-tRNA synthetase subunits. This reaction required ATP, AMP, 50-100 microM zinc, and inorganic pyrophosphatase. We show here that AMP can be omitted from the reaction and that the zinc levels can be markedly reduced provided catalytic amounts of tRNA(Lys) are added to the reaction mixture. Ap4A synthesis with purified tRNA(Lys) isoacceptors showed that the minor species, tRNA(4Lys), was 3-fold more active than either of the two major tRNA(Lys) species, tRNA(2Lys) and tRNA(5Lys). No activity could be demonstrated with tRNA(Lys) from Escherichia coli or with tRNA(Lys) or tRNA(Phe) from yeast. Aminoacylation of tRNA(4Lys) was strictly required as determined by the fact that Ap4A synthesis was not observed until aminoacylation was nearly complete, inhibitors of aminoacylation blocked Ap4A synthesis, and there was a strict requirement for added lysine. None of the above observations could be demonstrated, however, when lysyl-tRNA(Lys) was directly supplied to the reaction mixture. Optimum Ap4A synthesis was obtained by the addition of 1 mol of tRNA(Lys)/mol of the synthetase complex. This reaction is unique because it does not require the prior formation of an aminoacyl-AMP intermediate and because it can actively synthesize Ap4A at physiological zinc concentrations. The preferential role for tRNA(4Lys) in Ap4A synthesis is consistent with its prior implication in cell division.  相似文献   

15.
16.
Over 450 transfer RNA (tRNA) genes have been annotated in the human genome. Reliable quantitation of tRNA levels in human samples using microarray methods presents a technical challenge. We have developed a microarray method to quantify tRNAs based on a fluorescent dye-labeling technique. The first-generation tRNA microarray consists of 42 probes for nuclear encoded tRNAs and 21 probes for mitochondrial encoded tRNAs. These probes cover tRNAs for all 20 amino acids and 11 isoacceptor families. Using this array, we report that the amounts of tRNA within the total cellular RNA vary widely among eight different human tissues. The brain expresses higher overall levels of nuclear encoded tRNAs than every tissue examined but one and higher levels of mitochondrial encoded tRNAs than every tissue examined. We found tissue-specific differences in the expression of individual tRNA species, and tRNAs decoding amino acids with similar chemical properties exhibited coordinated expression in distinct tissue types. Relative tRNA abundance exhibits a statistically significant correlation to the codon usage of a collection of highly expressed, tissue-specific genes in a subset of tissues or tRNA isoacceptors. Our findings demonstrate the existence of tissue-specific expression of tRNA species that strongly implicates a role for tRNA heterogeneity in regulating translation and possibly additional processes in vertebrate organisms.  相似文献   

17.
18.
This report identifies L-ethionine as an inducer of differentiation in murine erythroleukemia cells. When Friend erythroleukemia cells are grown in the presence of 4mM L-ethionine, globin mRNA accumulates and in 4-5 days, 25-30% of the cells in the culture contain hemoglobin. Incubation of the cells with bromodeoxyuridine prevents both ethionine-induced accumulation of globin mRNA and erythroide differentiation. At the concentration where L-ethionine acts as an inducer of FL cell differentiation it inhibits methylation of DNA and tRNA in vivo but does not prevent macromolecular synthesis or cell division. To establish whether a link existed between inhibition of a specific methyltransferase and activation of globin synthesis in FL cells, we examined the degree of hypomethylation of DNA and tRNA from FL cells induced to differentiate with dimethylsulfoxide and butyrate. In contrast to the tRNA from ethionine-treated cells, tRNA from cells induced by butyrate or Me2SO cannot be methylated in vitro using homologous enzymes. DNA isolated from cells exposed to any of the three inducers, however, was significantly hypomethylated when compared with DNA from uninduced cells. These data suggest that methylation of DNA may play a role in the regulation of gene expression.  相似文献   

19.
20.
The Saccharomyces cerevisiae Yor112wp, which we named Cex1p, was identified using a yeast tRNA three-hybrid interaction approach and an in vivo nuclear tRNA export assay as a cytoplasmic component of the nuclear tRNA export machinery. Cex1p binds tRNA saturably, and associates with the nuclear pore complex by interacting directly with Nup116p. Cex1p co-purifies with the nuclear tRNA export receptors Los1p and Msn5p, the eukaryotic elongation factor eEF-1A, which delivers aminoacylated tRNAs to the ribosome, and the RanGTPase Gsp1p, but not with Cca1p, a tRNA maturation enzyme that facilitates translocation of non-aminoacylated tRNAs across the nuclear pore complex. Depletion of Cex1p and eEF-1A or Los1p significantly reduced the efficiency of nuclear tRNA export. Cex1p interacts with Los1p but not with eEF-1A in vitro. These findings suggest that Cex1p is a component of the nuclear aminoacylation-dependent tRNA export pathway in S. cerevisiae. They also suggest that Cex1p collects aminoacyl-tRNAs from the nuclear export receptors at the cytoplasmic side of the nuclear pore complex, and transfers them to eEF-1A using a channelling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号