首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fetal epithelioid cells, isolated from human amniotic fluid, synthesize and secrete a type IV-like procollagen characterized by a unique pattern of cyanogen bromide (CNBr)-produced peptides. The procollagen is disulfide-bonded and, after reduction, migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a doublet between collagen beta components and pro-alpha 1(I) chains. No conversion of the procollagen to collagen or to procollagen intermediates is observed in cell culture. The procollagen was purified by salt fractionation and ion exchange chromatography; its amino acid composition resembles that of collagenous proteins extracted from basement membranes, with a high 3- and 4-hydroxyproline and hydroxylysine content and low levels of alanine and arginine. The major products obtained after limited proteolytic digestion of the protein retain interchain disulfide bonds and, after reduction, migrate on sodium dodecyl sulfate-polyacrylamide gel electrophoresis near intact pro-alpha 1(I) chains. The procollagen is secreted efficiently by amniotic fluid cells despite almost complete inhibition of peptidyl hydroxylation but, unlike type I procollagen, the secreted underhydroxylated chains lack interchain disulfide bonds. Since these cells also secrete fibronectin and elaborate an extensive extracellular matrix, the system should prove useful in the study of cell-matrix interactions.  相似文献   

2.
B Goldberg  M B Taubman  A Radin 《Cell》1975,4(1):45-50
Procollagen peptidase was recovered from the medium of human and mouse fibroblast cultures by precipitation with ammonium sulfate. The test substrate for the in vitro enzymatic reaction was radioactively-labeled, disulfide-linked procollagen prepared from the medium of human fibroblast cultures. The enzymatic digests were analyzed by electrophoresis in polyacrylamide gets containing sodium dodecyl sulfate and urea. The human and mouse enzymes reacted with the substrate to generate the same intermediates and final products. Procollagen peptidase acts as an endopeptidase which cleaves each of the three procollagen chains in turn. The final products of the reaction are collagen and a three-chain, disulfide-linked fragment derived from the nonhelical aminoterminal residues of procollagen.  相似文献   

3.
The correct folding and assembly of proteins within the endoplasmic reticulum (ER) are prerequisites for subsequent transport from this organelle to the Golgi apparatus. The mechanisms underlying the ability of the cell to recognize and retain unassembled or malfolded proteins generally require binding to molecular chaperones within the ER. One classic example of this process occurs during the biosynthesis of procollagen. Here partially folded intermediates are retained and prevented from secretion, leading to a build up of unfolded chains within the cell. The accumulation of these partially folded intermediates occurs during vitamin C deficiency due to incomplete proline hydroxylation, as vitamin C is an essential co-factor of the enzyme prolyl 4-hydroxylase. In this report we show that this retention is tightly regulated with little or no secretion occurring under conditions preventing proline hydroxylation. We studied the molecular mechanism underlying retention by determining which proteins associate with partially folded procollagen intermediates within the ER. By using a combination of cross-linking and sucrose gradient analysis, we show that the major protein binding to procollagen during its biosynthesis is prolyl 4-hydroxylase, and no binding to other ER resident proteins including Hsp47 was detected. This binding is regulated by the folding status rather than the extent of hydroxylation of the chains demonstrating that this enzyme can recognize and retain unfolded procollagen chains and can release these chains for further transport once they have folded correctly.  相似文献   

4.
The conversion of chick bone procollagen to collagen proceeds in a stepwise fashion to produce a limited number of intermediates. Initial proteolytic cleavages remove NH2-terminal nonhelical extensions and yield an intermediate which remains disulfide-bonded via COOH-terminal extensions. Subsequent stepwise scission of one or two chains of the triple-stranded molecule in its COOH-terminal domain produces intermediates which can only be distinguished after dissociation of the noncovalently bonded alpha chains. A final cleavage in this region produces the collagen molecule and a disulfide-bonded triple-stranded fragment which represents the COOH-terminal domain. In all likelihood the endopeptidases which effect cleavage in the NH2- and COOH-terminal regions differ. More than two enzymes may be required for conversion of procollagen to collagen if the nonhelical domains are not released in an en bloc fashion.  相似文献   

5.
E Crouch  P Bornstein 《Biochemistry》1978,17(25):5499-5509
Second trimester human amniotic fluid cells synthesize and secrete a variety of collagenous proteins in culture. F cells (amniotic fluid fibroblasts) are the most active biosynthetically and synthesize predominantly type I with smaller amounts of type III procollagen. Epithelioid AF cells (the predominating clonable cell type) synthesize a type IV-like procollagen and a procollagen with three identical proalpha chains, structurally and immunologically related to the proalpha1 chains of type I procollagen. The latter procollagen, when cleaved with pepsin and denatured, yields a single non-disulfide-bonded alpha chain that migrates more slowly than F cell or human skin alpha1(I) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis but coelutes with these chains from carboxymethyl-cellulose. The major cyanogen bromide produced peptides demonstrate a similar behavior relative to peptides derived from alpha1(I). The collagen is characterized by an increased solubility at neutral pH and high ionic strength, relative to type I collagen. The amino acid composition of the pepsin-resistant alpha chain is essentially identical with that of human alpha1(I), except for marked increases in the content of 3- and 4-hydroxyproline and hydroxylysine. Preliminary experiments suggest that these increased posttranslational modifications are responsible for the unusually slow migration of this collagen and its cyanogen bromide peptides on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The procollagen has, therefore, been assigned the chain composition [proalpha1(I)]3. Like type I procollagen, [proalpha1(I)]3 undergoes a time-dependent conversion, in the medium and cell layer, to procollagen intermediates and alpha chains. The production of [proalpha1(I)]3 probably reflects the state of differentiation and/or embryologic derivation of AF cells rather than a characteristic of the fetal phenotype, since F cells do not synthesize significant amounts of the procollagen.  相似文献   

6.
The enzymatic conversion of chick embryo cranial bone procollagen was studied in vitro using procollagen proteases isolated from the culture medium of chick tendon fibroblasts. During the normal conversion process, chains intermediate in length between proα and α chains, as well as the COOH-terminal extension peptides, can be identified. Underglycosylated procollagen, synthesized by bones treated with an inhibitor of protein glycosylation (tunicamycin), was processed by these proteases in a manner similar to that of intact procollagen. However, medium from cells cultured with tunicamycin lacked the COOH-terminal procollagen protease activity; this did not result from a direct inhibition of the protease by the drug. Concanavalin A also inhibited the conversion of procollagen to collagen by fibroblasts in culture. In an in vitro system, Concanavalin A inhibited the COOH-terminal procollagen protease, and this inhibition was reversed by methyl-α-d-glucopyranoside. These data suggest that the COOH-terminal procollagen protease contains oligosaccharide side chains that are recognized by concanavalin A and that tunicamycin affects the secretion, activity, or activation of the enzyme.  相似文献   

7.
The major collagenous component secreted into the medium of cultured HT-1080 tumor cells was identified as type IV procollagen by specific antibodies and characteristic ratios of incorporated labeled 3-hydroxyproline and 4-hydroxyproline. The disulfide-bonded molecules consisted of two subunits, pro-alpha 1(IV) and pro-alpha 2(IV) chains with apparent molecular weights of 180 000 and 165 000. No conversion of the procollagen to collagen or to procollagen intermediates was detected in the cell cultures. The two subunits apparently represent different gene products, since enzymatic digestion of the separated chains produced quite different peptide maps. Pepsin degraded native type IV procollagen successively into several fragments, some still disulfide-linked, giving rise to a complex set of polypeptide chains (Mr = 30 000-140 000). This agrees with similar diverse patterns produced by pepsin from authentic type IV collagens. The ratio between the pro-alpha 1(IV) and pro-alpha 2(IV) chains varied in several experiments between 1.3 and 1.8, suggesting that the two chains belong to different triple-helical molecules. The cells also produced distinct amounts of fibronectin (subunit Mr = 230 000) and of the basement membrane glycoprotein laminin. The latter showed three subunits with Mr = 220 000, 210 000, and 400 000. A further disulfide-bonded, non-collagenous polypeptide (Mr = 160 000) was detected but not yet identified. Immunofluorescence demonstrated these proteins within the cells but not in a pericellular matrix. The production of basement membrane components by HT-1080 cells and lack of interstitial collagens disagree with the original classification of the cell line as a fibrosarcoma.  相似文献   

8.
J F Lees  M Tasab    N J Bulleid 《The EMBO journal》1997,16(5):908-916
A key question relating to procollagen biosynthesis is the way in which closely related procollagen chains discriminate between each other to assemble in a type-specific manner. Intracellular assembly of procollagen occurs via an initial interaction between the C-propeptides followed by vectorial propagation of the triple-helical domain in the C to N direction. Recognition signals within the C-propeptides must, therefore, determine the selective association of individual procollagen chains. We have used the pro alpha1 chain of type III procollagen [pro alpha1(III)] and the pro alpha2 chain of type I procollagen [pro alpha2(I)] as examples of procollagen chains that are either capable or incapable of self-assembly. When we exchanged the C-propeptides of the pro alpha1(III) chain and the pro alpha(I) chain we demonstrated that this domain is both necessary and sufficient to direct the assembly of homotrimers with correctly aligned triple-helices. To identify the sequences within this domain that determine selective association we constructed a series of chimeric procollagen chains in which we exchanged specific sequences from the pro alpha1(III) C-propeptide with the corresponding region within the pro alpha2(I) C-propeptide (and vice versa) and assayed for the ability of these molecules to form homotrimers. Using this approach we have identified a discontinuous sequence of 15 amino acids which directs procollagen self-association. By exchanging this sequence between different procollagen chains we can direct chain association and, potentially, assemble molecules with defined chain compositions.  相似文献   

9.
The processing of type III and type I procollagen molecules in cultured bovine aortic smooth muscle cells was investigated. The molecular identities of the processing intermediates of type III and type I procollagen were characterized by analysis of the radioactive collagenous components using mammalian collagenase and pepsin digestions and cyanogen bromide peptide mapping. The results indicate that the processed intermediates for procollagen type III and type I are their respective pC components. Although the processing pathways for both collagen types are the same, data from pulse-chase experiments suggest that the rates at which the processing occurs are different. Type I procollagen is processed more rapidly to its intermediate than is type III procollagen. The type I pC intermediate is almost completely processed to alpha-chains and a significant portion of these fully processed molecules remains in a soluble form even after 11 h. In the same time period, the type III pC intermediate is slowly converted to alpha-chains. Since beta-aminopropionitrile was not employed in these studies, significant accumulation of collagen chains into the insoluble extracellular matrix was observed during the chase period.  相似文献   

10.
[3H]Proline-labeled nascent procollagen chains were isolated from chick tendon polysome preparations as peptidyl-tRNA complexes by ion exchange chromatography. Proline hydroxylation of the nascent chains was at least 40% complete, based on radioactive hydroxyproline/proline ratios. These data provide the first direct evidence that hydroxylation of procollagen proline residues does occur on nascent chains. The electrophoretic profiles of [3H]proline-labeled nascent chains and of unlabeled nascent chains visualized by Western blotting with 35S-labeled monoclonal antibodies to the alpha 1(I) N-propeptide or the C-propeptides indicate that there are pauses in the translation of procollagen alpha-chains in the intact cells. Approximately 25% of the radioactivity associated with [3H]proline-labeled polysomes was in fully elongated but underhydroxylated (relative to secreted procollagen) pro-alpha-chains. The association of these completely elongated but only partially modified procollagen chains with the polysome complex may facilitate the carboxyl-terminal interactions which lead to triple helix formation.  相似文献   

11.
Folding of carboxyl domain and assembly of procollagen I   总被引:3,自引:0,他引:3  
An early form of procollagen I was found in acetic acid extracts of radioactively labeled chick embryo skull bones. It resembled native procollagen I, but sedimented slightly faster, and its component chains were slightly underhydroxylated and were not disulfide-linked to each other, although its propeptides were internally disulfide-bonded. Pulse-chase experiments showed its conversion to disulfide-linked procollagen. As the same conversion occurred when proline hydroxylation was blocked by 2,2'-dipyridyl, we infer that the formation of this precursor from its component chains does not require collagen triple helix formation. We suggest that interaction between the folded carboxyl propeptides of individual pro-alpha (I) chains is an important step in the formation of this precursor and of procollagen I. Studies of the refolding and association of fully reduced and denatured carboxyl propeptides supported this concept. In the presence of glutathione the correct disulfide bonds could be reestablished, as judged by a mapping of some tryptic peptides. Individual carboxyl propeptides refolded first, and this occurred even in 2 M urea. Recognition between folded carboxyl propeptides occurred only when less than 0.5 M urea was present. The presence of the carboxyl telopeptides was important for trimeric reassembly. Individual propeptides also folded spontaneously during cell-free translation of pro-alpha (I) chains and were recognized by specific antibodies. We consider the role of carboxyl propeptides in the formation of procollagen I molecules and suggest a model of self-assembly, possibly facilitated by interactions with the luminal surface of the rough endoplasmic reticulum.  相似文献   

12.
Procollagen from the culture medium of human foreskin fibroblasts is efficiently adsorbed on controlled-pore glass (CPG) beads. Elution of adsorbed protease(s), capable of procollagen degradation, is accomplished with 1 m phosphate. This allows subsequent purification steps to be accomplished without detectable degradation of the high-molecular-weight procollagen form which is subsequently eluted with 1 m Tris. Analysis of the Tris elution fraction from CPG beads by sodium dodecyl sulfate-agarose-polyacrylamide electrophoresis on 2% gels indicated that the majority of protein is types I and III procollagens and partially processed intermediates. Types I and III procollagens were separated by DEAE-cellulose chromatography, and presumptive undegraded type I procollagen was resolved from processed forms by molecular sieve chromatography in 1 m CaCl2 on agarose beads. The high-molecular-weight type I human procollagen isolated by this method was found to contain both amino and carboxy-terminal propeptides. Two α1 and one α2 procollagen chains, disulfide bonded via the carboxy-terminal propeptides, are present per molecule. This procedure represents an efficient and relatively rapid method for preparing human procollagen in sufficient quantity for detailed chemical analysis.  相似文献   

13.
Efficient quality control and export of procollagen from the cell is crucial for extracellular matrix homeostasis, yet it is still incompletely understood. One of the debated questions is the role of a collagen-specific ER chaperone HSP47 in these processes. Most ER chaperones preferentially bind to unfolded polypeptide chains, enabling selective export of natively folded proteins from the ER after chaperone release. In contrast, HSP47 preferentially binds to the natively folded procollagen and is believed to be released only in the ER-Golgi intermediate compartment (ERGIC) or cis-Golgi. HSP47 colocalization with procollagen in punctate structures observed by immunofluorescence imaging of fixed cells has thus been interpreted as evidence for HSP47 export from the ER together with procollagen in transport vesicles destined for ERGIC or Golgi. To understand the mechanism of this co-trafficking and its physiological significance, we imaged the dynamics of fluorescently tagged type I procollagen and HSP47 punctate structures in live MC3T3 murine osteoblasts with up to 120 nm spatial and 500 ms time resolution. Contrary to the prevailing model, we discovered that most bona fide carriers delivering procollagen from ER exit sites (ERESs) to Golgi contained no HSP47, unless the RDEL signal for ER retention in HSP47 was deleted or mutated. These transport intermediates exhibited characteristic rapid, directional motion along microtubules, while puncta with colocalized HSP47 and procollagen similar to the ones described before had only limited, stochastic motion. Live cell imaging and fluorescence recovery after photobleaching revealed that the latter puncta (including the ones induced by ARF1 inhibition) were dilated regions of ER lumen, ERESs, or autophagic structures surrounded by lysosomal membranes. Procollagen was colocalized with HSP47 and ERGIC53 at ERESs. It was colocalized with ERGIC53 but not HSP47 in Golgi-bound transport intermediates. Our results suggest that procollagen and HSP47 sorting occurs at ERES before procollagen is exported from the ER in Golgi-bound transport intermediates, providing new insights into mechanisms of procollagen trafficking.  相似文献   

14.
Embryonic chick fibroblasts were incubated with [14C]proline and puromycin in the low concentrations of 1 to 3 mug/ml. The molecular weight of the synthesized procollagen chains, as measured by polyacrylamide gel electrophoresis in sodium dodecyl sulfate, was progressively reduced by increasing concentrations of puromycin in this range. For example, at 3 mug/ml the great majority of the [14C]proline was contained in procollagen chains having an average molecular weight of about 95,000 instead of the control value of 125,000. Associated with this decrease in molecular weight there was a marked decrease in the incorporation of cysteine although [14C]proline incorporation was relatively unaffedted. Disulfide bond formation was drastically inhibited as was triple helix formation as measured by resistance of the procollagen to pepsin digestion. Although the shortened procollagen chains were of normal hydroxyproline content, they nevertheless were secreted much more slowly than normal procollagen. Based upon these findings, we postulate that: (a) low concentrations of puromycin terminate procollagen chains before a COOH-terminal extension is completed, (b) these COOH-terminal extensions are required for normal assembly of the three individual procollagen chains and for triple helix formation, and (c) only assembled, triple helical procollagen molecules are selected for normal secretion.  相似文献   

15.
Collagen synthesis by bovine aortic endothelial cells in culture.   总被引:8,自引:0,他引:8  
H Sage  E Crouch  P Bornstein 《Biochemistry》1979,18(24):5433-5442
Endothelial cells isolated from bovine aorta synthesize and secrete type III procollagen in culture. The procollagen, which represents the major collagenous protein in culture medium, was specifically precipitated by antibodies to bovine type III procollagen and was purified by diethyl-aminoethylcellulose chromatography. Unequivocal identification of the pepsin-treated collagen was made by direct comparison with type III collagen isolated by pepsin digestion of bovine skin, utilizing peptide cleavage patterns generated by vertebrate collagenase, CNBr, and mast cell protease. The type III collagen was hydroxylated to a high degree, having a hydroxyproline/proline ratio of 1.5:1.0. Pulse-chase studies indicated that the procollagen was not processed to procollagen intermediates or to collagen. Pepsin treatment of cell layers, followed by salt fractionation at acidic and neutral pH, produced several components which were sensitive to bacterial collagenase and which comigrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with alpha A, alpha B, and type IV collagen chains purified from human placenta by similar techniques. Bovine aortic endothelial cells also secreted fibronectin and a bacterial collagenase-insensitive glycoprotein which, after reduction, had a molecular weight of 135,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (using procollagen molecular weight standards) and which was not precipitable by antibodies to cold-insoluble globulin or to alpha 2-macroglobulin. Collagen biosynthesis by these cells provides an interesting model system for studying the polarity of protein secretion and the attachment of cells to an extracellular matrix. The presence of type III collagen in the subendothelium and the specific interaction of this protein with fibronectin and platelets suggest the involvement of this collagen in thrombus formation following endothelial cell injury.  相似文献   

16.
Assembly and processing of procollagen type III in chick embryo blood vessels   总被引:10,自引:0,他引:10  
The processing of [3H]proline-labeled procollagen III in excised chick embryo blood vessels was found to differ significantly from that of procollagen I in the same tissue. While first the amino propeptides and then the carboxyl propeptides were fairly rapidly cleaved from procollagen I, only the carboxyl propeptides were split off procollagen III, leaving pN-collagen III. This intermediate, which is only slowly converted to collagen III by loss of amino propeptides, was characterized by its sedimentation properties, isolation of the amino propeptide, and reaction with purified antibodies that are specific against bovine amino propeptide III. It is interchain disulfide-linked, both through the amino propeptide and the carboxyl ends of the collagen chains. The conversion of procollagen III to pN-collagen III either in blood vessels, or after isolation by a carboxyl procollagen peptidase obtained from chick tendon fibroblast cultures, is inhibited by 50 mM arginine. Underhydroxylated procollagen III was isolated from blood vessels treated with alpha, alpha'-dipyridyl. Its amino propeptides reacted with the above antibodies but were not linked to each other. In contrast, its carboxyl propeptides were interchain disulfide-bridged, supporting previous suggestions that the carboxyl propeptides play a role in the assembly of procollagen trimer.  相似文献   

17.
Chick embryo sterna, which actively synthesize type II procollagen, were pulse-labeled with radioactive proline; protein synthesis was then inhibited by unlabeled proline and cycloheximide. After the inhibition of protein synthesis, several amino acids, polyamines, or structurally related compounds were added to the incubation medium. The conversion of procollagen, first to two intermediates, pC-collagen and pN-collagen, and then to collagen, was monitored by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. The addition of 50 mm β-alanine, arginine, asparagine, glutamine, hydroxylysine, lysine, or ornithine, as well as agmatine, ?-aminocaproic acid, S-2-aminoethylcysteine, cadaverine, canavanine, putrescine, or spermine clearly inhibited the removal of the carboxy-terminal extension and pC-collagen accumulated; the removal of the amino-terminal extension was not affected. The inhibition of the conversion was reversible and unaffected by fetal calf serum. The results suggest that the conversion of type II procollagen to collagen requires at least two separate proteinases for the removal of amino-terminal and carboxy-terminal extensions. The results further suggest that naturally occurring molecules may be used to modulate the rate of conversion of procollagen to collagen, and development of analogs of these compounds may provide the means to interfere with excessive deposition of collagen in diseases with tissue fibrosis.  相似文献   

18.
Somatic cell hybrids between mouse and Chinese hamster fibroblasts have been used to identify the chromosome responsible for the synthesis of both mouse type I procollagen subunit chains (MCOLA1 and MCOLA2). Thirty-one separate hybrid clones and subclones from ten separate hybridization events were isolated in hypoxanthine-aminopterin-thymidine (HAT) selection medium and were used for detailed gene-mapping studies. ELISA and "Western blotting" immunochemical analysis were used to detect the production of mouse type I procollagen in each hybrid clone. Mouse and Chinese hamster chromosomes were identified in each hybrid clone by trypsin-Giemsa banding of metaphase chromosome spreads and by isozyme analysis. We have found that mouse type I procollagen production segregates concordantly with mouse superoxide dismutase-1, previously mapped to mouse chromosome 16, and with the presence of mouse chromosome 16 karyotypically. Western blotting immunochemical analysis of the separated mouse procollagen chains produced by each hybrid line demonstrated that apparently the genes for both subunit chains are located on the same chromosome. These studies, therefore, assign the structural genes for mouse type I procollagen pro alpha 1 (MCOLA1) and pro alpha 2 (MCOLA2) chains to mouse chromosome 16.  相似文献   

19.
The biosynthesis and proteolytic processing of type XI procollagen was examined using pulse-chase labelling of 17-day embryonic chick sterna in organ culture with [3H]proline. Products of biosynthesis were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with and without prior reduction of disulfide bonds. Pro-alpha chains, intermediates, and matrix forms were identified by cyanogen bromide or Staphylococcus aureus V8 protease digestion. The results show that type XI pro-alpha chains assemble into trimeric molecules with interchain disulfide bonds. Proteolytic processing begins at least 40 min after the start of labeling which is later than that of type II procollagen (25 min). This first processing step involves the loss of the domain containing the interchain disulfide bonds which most likely is the carboxyl propeptide. In the case of the pro-alpha 3 chain, this generates the matrix form, m alpha 3, which retains its amino propeptide. For the pro-alpha 1 and pro-alpha 2 chains, this step generates intermediate forms, p alpha 1 and p alpha 2, which undergo a second proteolytic conversion to m alpha 1 and m alpha 2, and yet retain a pepsin-labile domain. The conversion of p alpha 2 to m alpha 2 is largely complete 2 h after labeling. p alpha 1 is converted to m alpha 1 very slowly and is 50% complete after 18 h of chase in organ culture. The apparent proteolytic processing within the amino propeptide, and the differential rate of processing between two chains in the same molecule are unusual and distinguish type XI from collagen types I, II, and III. It is possible that the extremely slow processing of p alpha 1 affects the formation of the heterotypic cartilage collagen fibrils and may be related to the function of type XI collagen.  相似文献   

20.
The specific mammalian collagenase isolated from cultures of metastatic mouse PMT sarcoma cells cleaves murine procollagen IV into two segments, of approximate mass ratio 3:1. These fragments were separated by velocity sedimentation, visualized by electron microscopy, and analyzed. The longer COOH-terminal procollagen segment has a 270-nm collagenous portion with a knob at one end. This knob consists of the three previously identified, noncollagenous carboxyl propeptides, of approximately 30,000 daltons each. These carboxyl propeptides are chain-specific, and the three chains of each segment have the same amino to carboxyl orientation. The collagenase cuts through all three chains at one site, and the three-component chains of both the longer COOH-terminal procollagen segment and the shorter NH2-terminal procollagen segment are linked by interchain disulfide bridges. The enzyme cuts off the same COOH-terminal procollagen segment from procollagen IV monomers and tetramers, and the flexibility of this segment is similar to that of interstitial collagen helices. The amino ends of the NH2-terminal procollagen segments derived from tetramers remain joined as the 32-nm long "7 S collagen" junctional complex, and the remaining 89-nm long projecting threads are significantly more flexible than the COOH-terminal procollagen segment. The electrophoretic mobilities of the enzyme cleavage products are consistent with a heterotrimeric composition of this procollagen IV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号