首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
1. The responsiveness of adenylate cyclase and enzyme secretin for secretin and the C-terminal octapeptide of pancreozymin has been investigated in particulate fractions of the pancreas of five different species. 2. The adenylate cyclase is sensitive to the C-terminal octapeptide of pancreozymin in all species investigated. 3. The enzyme is much more sensitive to secretin in rat and cat than in mouse and rabbit, whereas with guinea pig intermediate values are obtained. 4. The enzyme secretion is stimulated by secretin in pancreatic fragments of rat and cat, but not in those of mouse and rabbit. 5. These results suggest that in species where secretin stimulated enzyme secretion, it does so by stimulating the adenylate cyclase system.  相似文献   

2.
3.
None of six different tryptophan-modified analogues of the C-terminal octapeptide of cholecystokinin differed from the unaltered peptide in terms of their efficacies for stimulating amylase secretion from dispersed acini prepared from guinea-pig pancreas. Replacementof hydrogen with fluorine in position 5 or 6 on the indole ring of the tryptophan residue did not alter the potency with which the peptide stimulated amylase secretion; however, replacement of hydrogen by fluorine in positions 4, 5, 6, and 7 of the indole ring, of modifying or replacing the indole nitrogen caused a 30- to 300-fold decrease in potency. Changes in the ability of the peptide to stimulate amylase secretion were accompanied by corresponding changes in the ability of the peptide to inhibit binding of 125I-labeled cholecystokinin. Our findings indicate that reducing the ability of the tryptophan residue to donate electrons produced a greater decrease in the affinity of the peptide for the cholecystokinin receptors than did abolishing the ability of tryptophan to form hydrogen bonds, and modifications that altered both abilities caused a greater decrease in affinity than did modification of only one ability. Finally, in the tryptophan residues of cholecystokinin octapeptide, tetrafluorination of the indole ring or replacing the indole nitrogen by oxygen reduced the ability of the peptide to cause residual stimulation of enzyme secretion, probably by accelerating the rate at which bound peptide dissociated from its receptors when the acini were washed and resuspended in fresh incubation solution.  相似文献   

4.
When dispersed acini from mouse pancreas are first incubated with cholecystokinin octapeptide, washed and then reincubated with no additions there is significant stimulation of amylase secretion during the second incubation (residual stimulation of enzyme secretion). Cholecystokinin-induced residual stimulation of enzyme secretion is modified, but not abolished, by reducing the temperature of the first incubation from 37 degrees C to 4 degrees C. Measurement of binding of 125I-labeled cholecystokinin octapeptide indicated that maximal cholecystokinin induced residual stimulation of enzyme secretion occurs when 12-20% of cholecystokinin receptors are occupied by cholecystokinin octapeptide. Moreover, maximal cholecystokinin-induced residual stimulation of amylase secretion is 25% greater than maximal cholecystokinin-induced direct stimulation of amylase secretion. Cholecystokinin tetrapeptide, which causes the same maximal direct stimulation of amylase secretion as does cholecystokinin octapeptide, causes a maximal residual stimulation of enzyme secretion that is only 30% of that caused by a maximally effective concentration of cholecystokinin octapeptide. Adding dibutyryl cyclic GMP to the second incubation can reverse the residual stimulation caused by adding cholecystokinin to the first incubation. The pattern and extent of the dibutyryl cyclic GMP-induced reversal of residual stimulation varies, depending on the temperature and concentration of cholecystokinin octapeptide in the first incubation. The present results are compatible with the hypothesis that mouse pancreatic acini possess two classes of cholecystokinin receptors. One class has a relatively high affinity for cholecystokinin and produces stimulation of enzyme secretion; the other class has a relatively low affinity for cholecystokinin and produces inhibition of enzyme secretion.  相似文献   

5.
When dispersed acini from mouse pancreas are first incubated with cholecystokinin octapeptide, washed and then reincubated with no additions there is significant stimulation of amylase secretion during the second incubation (residual stimulation of enzyme secretion). Cholecystokinin-induced residual stimulation of enzyme secretion is modified, but not abolished, by reducing the temperature of the first incubation from 37°C to 4°C. Measurement of binding of 125I-labeled cholecystokinin octapeptide indicated that maximal cholecystokinin induced residual stimulation of enzyme secretion occurs when 12–20% of cholecystokinin receptors are occupied by cholecystokinin octapeptide. Moreover, maximal cholecystokinin-induced residual stimulation of amylase secretion is 25% greater than maximal cholecystokinin-induced direct stimulation of amylase secretion. Cholecystokinin tetrapeptide, which causes the same maximal direct stimulation of amylase secretion as does cholecystokinin octapeptide, causes a maximal residual stimulation of enzyme secretion that is only 30% of that caused by a maximally effective concentration of cholecystokinin octapeptide. Adding dibutyryl cyclic GMP to the second incubation can reverse the residual stimulation caused by adding cholecystokinin to the first incubation. The pattern and extent of the dibutyryl cyclic GMP-induced reversal of residual stimulation varies, depending on the temperature and concentration of cholecystokinin octapeptide in the first incubation. The present results are compatible with the hypothesis that mouse pancreatic acini possess two classes of cholecystokinin receptors. One class has a relatively high affinity for cholecystokinin and produces stimulation of enzyme secretion; the other class has a relatively low affinity for cholecystokinin and produces inhibition of enzyme secretion.  相似文献   

6.
1. The activation of rat pancreatic adenylate cyclase by guanosine 5'-(beta-gamma-imido)triphosphate (p[NH]ppG) and GTP, and by the two gastrointestinal hormones pancreozymin (as C-terminal octapeptide) and secretin was correlated with the binding of [8-3H]guanosine 5'-(beta-gamma-imido)triphosphate to rat pancreatic plasma membranes. 2. The low basal adenylate cyclase activity was stimulated 17-fold by p[NH]ppG (after a 2 min lag period), 3,5-fold only by GTP, 21-fold by C-terminal octapeptide of pancreozymin, and 8-fold by secretin. GTP inhibited competitively the activation of adenylate cyclase by p[NH]ppG with a Ki,app almost identical with the Ka,app (0.3 micron). p[NH]ppG and GTP enhanced the stimulation by secretin more markedly than that by the C-terminal octapeptide of pancreozymin, leading to the same maximal activity. Both hormones suppressed the lag period of activation by p[NH]ppG. 3. The binding of [8-3H]p[NH]ppG was dependent on time, temperature and Mg2+ and it was also a saturable and reversible process. Scatchard plots with a concavity upward were linearized after co-addition of ATP, Mg2+ and an ATP-regenerating system that abolished low-affinity sites for p[NH]ppG without saturating higher affinity sites, GTP, ITP and UTP inhibited [8-3H]p[NH]ppG binding to the high-affinity sites in concentration ranges identical with those found for adenylate cyclase activation. Considerable binding of [8-3H]p[NH]ppG was still evident at 20 degrees C, but enzyme activation was not observed any more, except in the presence of hormones.  相似文献   

7.
The role of cyclic AMP in the regulation of enzyme secretion by the rabbit pancreas has been investigated by means of forskolin, an activator of the catalytic subunit of adenylate cyclase. Forskolin increases the cyclic AMP level in isolated pancreatic acini in a dose-dependent way. Basal amylase release, however, remains unchanged. Forskolin potentiates the increase in amylase release induced by the C-terminal octapeptide of cholecystokinin (CCK-8). Potentiation is already apparent at hormone concentrations which are only marginally effective in stimulating amylase secretion. CCK-8 alone does not raise the cellular cAMP level, but it potentiates the forskolin-induced increase. In relative terms, potentiation is higher with decreasing concentration of forskolin. These results indicate that cAMP alone does not play a direct role in CCK-stimulated pancreatic enzyme secretion in the rabbit, but it potentiates enzyme secretion already stimulated through a cAMP-independent process.  相似文献   

8.
1. The cyclic AMP phosphodiesterase in homogenates of the submaxillary gland and pancreas was found to be associated mainly with the 300,000 times g supernatant fraction. A Lineweaver-Burk plot showed a high-affinity (Km app. = 1.6 muM) and a low-affinity (Km app. greater than 100muM) component for the cyclic AMP substrate. The enzyme was magnesium dependent, and strongly inhibited by papaverine, theophylline and caffeine. Cyclic GMP inhibited cyclic AMP phosphodiesterase, but only in concentrations greatly exceeding that of the cyclic AMP. Calcium did not alter the activity of the enzyme. The activity of the submaxillary cyclic AMP phosphodiesterase was not influenced by noradrenaline, dopamine, histamine, 5-hydroxytryptamine or gamma-amino butyric acid, and that of the pancreatic enzyme by acetylcholine, pancreozymin or secretin. 2. Adenylate cyclases from guinea-pig submaxillary gland and cat pancreas are particulate enzymes. The highest specific activity was recovered from the 1500 times g pellet. Guineo-pig submaxillary adenylate cyclase was activated by fluoride, noradrenaline, isoprenaline and adrenaline. The noradrenaline activation was blocked by the beta-adrenoceptor blocker, propranolol, but not by the alphs-adrenoceptor blocker, phentolamine. Neither acetylcholine nor carbachol had any effect on the adenylate cyclase activity. The apparent Km value for the 10- minus 4 M noradrenaline activated adenylate cyclase activity was completely aboliched by 5 mM calcium. Cat pancreatic adenylate cyclase was clearly and consistently activated by secretin, but not by pancreozymin or carbachol.  相似文献   

9.
The role of a pertussis toxin sensitive GTP-binding protein in mediating between cholecystokinin receptors and phosphatidylinositol 4,5-bisphosphate phosphodiesterase as well as in preventing cholecystokinin from increasing cellular cyclic AMP has been investigated using dispersed acini from rabbit pancreas. Pertussis toxin pretreatment (500 ng/ml, 2 h) did not affect cholecystokinin(octapeptide) (CCK-8)-induced increases in cytosolic free Ca2+ as judged from changes in fluorescence obtained from quin2-loaded acini. Although pretreatment with pertussis toxin was also without effect on resting acinar cell cyclic AMP levels, adenylate cyclase activity was increased, since inhibition of cyclic AMP phosphodiesterase activity by isobutylmethylxanthine (IBMX) resulted in an additional increase in cyclic AMP levels in toxin-treated acini, indicating that acinar cell adenylate cyclase activity is under some tonic inhibitory control by the pertussis toxin-sensitive inhibitory GTP-binding protein (Gi) of the adenylate cyclase system. CCK-8 gave an increase in cyclic AMP levels in both control (1.6-fold) and toxin-treated (2.3-fold) acini, leading to cyclic AMP levels in the toxin-treated acini 2-times as high as those in control acini. In the presence of IBMX, the cyclic AMP response to CCK-8 was again markedly enhanced in acini pretreated with the toxin (3.2- vs. 1.8-fold), resulting in cAMP levels in the toxin-treated acini 3.7-times those in the absence of IBMX, 2.5-times those in control acini in the presence of IBMX and 7.0-times those in control acini in the absence of IBMX. Neither the pretreatment with pertussis toxin, nor the presence of IBMX alone, nor the combination had an effect on basal amylase secretion. However, all three treatments potentiated the stimulatory effect of CCK-8 on amylase secretion and the amount of potentiation was proportional to the cyclic AMP levels reached. Our findings suggest that in the intact pancreatic acinar cell Gi inhibition of the catalytic subunit of the adenylate cyclase may largely be responsible for preventing cholecystokinin from increasing cellular cyclic AMP. They moreover show that cyclic AMP is a modulatory agent in rabbit pancreatic enzyme secretion, not able to stimulate secretion itself, but potentiating effects mediated by the phosphatidylinositol-calcium pathway.  相似文献   

10.
Considerable controversy has surrounded the question of whether the exocrine pancreas discharges digestive enzymes in a parallel or nonparallel fashion. A recent report (Rothman, S.S., and Wilking, H. (1978) J. Biol. Chem. 253, 3543-3549) claimed that the in vitro rabbit pancreas demonstrated nonparallel enzyme discharge after stimulation with cholecystokinin/pancreozymin, but that parallel discharge followed stimulation with the COOH-terminal octapeptide of cholecystokinin/pancreozymin. It was suggested that the full hormone acted to inhibit chymotrypsinogen secretion while stimulating trypsinogen secretion. Because of the fundamental importance of this question to our understanding of the exocrine secretion of exportable proteins, we have repeated these experiments using the same preparation and stimulant but have observed only parallel enzyme discharge. We conclude that it is unlikely that cholecystokinin/pancreozymin causes the selective inhibition of chymotrypsinogen secretion.  相似文献   

11.
1. 125I-labelled secretin bound rapidly and specifically to membranes from cat pancreas. Binding of labelled hormone was competitively inhibited by unlabelled secretin in the same range of concentrations that stimulated pancreatic adenylate cyclase in these membranes. The dissociation constant of the membrane binding sites for unlabelled secretin as evaluated by these displacement experiments was 4.1-10(-9) M and the number of binding sites 1.0 pmol per mg of membrane protein. 2. Studies using different concentrations of [125I]secretin (at a constant ratio of labelled to unlabelled hormone) revealed a similar value of 4-4-10(-9) M for the dissociation constant. 3. Both the association and dissociation rate constants of [125I]secretin binding were temperature sensitive; the dissociation rate constant increased more rapidly with increase in temperature. The ratio k-1/k+1 (at 22 degrees C) gave a dissociation constant of 3.7-10(-9)M which agrees closely with the figure obtained from equilibrium data. These data indicate that 125I-labelled secretin and unlabelled secretin bind to the same binding site on pancreatic membranes, with high affinity. 4. Unlabelled secretin stimulated pancreatic adenylate cyclase with an apparent Km of 8.4-10(-9) M, while [125I]secretin apparently did not stimulate the adenylate cyclase. Together with the binding data this might suggest that different portions of the secretin molecule are responsible for binding and adenylate cyclase activation. 5. Studies on the specificity of [125I]secretin binding carried out with various peptide hormones (glucagon, human gastrin, pancreozymin and caerulein) which are all inefficient in stimulating pancreatic fluid secretin, showed that these hormones have no influence on the binding of [125I]secretin. In contrast, vasoactive intestinal polypeptide, which stimulates pancreatic fluid and bicarbonate secretion, showed a competitive inhibition of secretin binding to the plasma membrane preparation.  相似文献   

12.
Male rats were treated for 10 days with the organophosphorus insecticide, acetylcholinesterase inhibitor, O,O-diethyl S-[2-(ethylthio)ethyl]phosphorodithioate (disulfoton, 2 mg/kg/day by gavage). At the end of the treatment, binding of [3H]quinuclidinyl benzilate ([3H]QNB) to cholinergic muscarinic receptors and cholinesterase (ChE) activity were assayed in the pancreas. Functional activity of pancreatic muscarinic receptor was investigated by determining carbachol-stimulated secretion of α-amylase in vitro. ChE activity and [3H]QNB binding were significantly decreased in the pancreas from disulfoton-treated rats. The alteration of [3H]QNB binding was due to a decrease in muscarinic receptor density with no change in the affinity. Basal secretion of amylase from pancreas in vitro was not altered, but carbachol-stimulated secretion was decreased. The effect appeared to be specific since pancreozymin was able to induce the same amylase release from pancreases of control and treated rats. The results suggest that repeated exposures to sublethal doses of an organophosphorus insecticide lead to a biochemical and functional alteration of cholinergic muscarinic receptors in the pancreas.  相似文献   

13.
The adenylate cyclase system of normal mouse islets was characterized. The pH optimum of the system was 7.6. The enzyme preparation contained particulate phosphodiesterase activity. This could be removed by treatment with 0.4% (v/v) Triton X-100 or inhibited by 8mm-theophylline in the presence of 2mm-cyclic AMP (adenosine 3':5'-cyclic monophosphate). ATP at 0.32mm produced one-half maximal enzyme activity. The enzyme was stimulated in the presence of F(-) and strongly inhibited by Ca(2+). The isolated enzyme retained hormonal sensitivity and was stimulated by glucagon, pancreozymin and secretin at physiological concentrations. Glucose at 17mm, 8mm and 2mm had no direct effect on the activity of the enzyme; neither did galactose at the same concentrations. Groups of islets incubated in 17mm- or 2mm-glucose for 5 or 15min and then homogenized and assayed for adenylate cyclase activity showed no differences in adenylate cyclase activity. The results suggest that the mechanism of glucose-mediated insulin release is not via the adenylate cyclase system. Hormones, however, could mediate insulin secretion via their effects on the adenylate cyclase system.  相似文献   

14.
Cholera toxin-stimulated fluid secretion by the ileum is believed to be mediated by an adenylate cyclase-cyclic AMP mechanism. Immunization against cholera toxin (CT) reduces CT binding to microvillus membranes and suppresses fluid secretion following CT challenge. The present study disclosed no alteration in the fluid absorption rates. However, suppression of fluid secretion occurred despite maximal stimulation of mucosal adenylate cyclase in immunized animals.  相似文献   

15.
16.
The albumen gland in Helisoma secretes a perivitelline fluid which surrounds each egg and is made up of several 66 kDa protein subunits and polysaccharide complexes. Forskolin, an adenylate cyclase activator, stimulated the secretion and release of the perivitelline fluid. An acidic extract of the central nervous system increased the intracellular concentration of cAMP in the albumen gland and this results in the release of the 66 kDa molecule and other proteins. Digestion of the brain extract with proteases abolished this activity, suggesting that the factor is a peptide. Cyclic AMP analogues and [BMX also stimulated the protein secretion in dose-dependent manner. Forskolin when added with the brain factor had an additive response. SQ22536, a non-competitive inhibitor of adenylate cyclase, inhibited brain extract dependent adenylate cyclase activity whereas aluminum fluoride, a G protein activator, was found to stimulate adenylate cyclase. Dopamine also stimulates protein secretion by the albumen gland and through the application of various agonists and antagonists of dopamine, it was established that the neurotransmitter acts via D1-like receptors by stimulating adenylate cyclase.  相似文献   

17.
Z Mungan  A Ertan  R A Hammer  A Arimura 《Peptides》1991,12(3):559-562
A novel neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP), which has been isolated from ovine hypothalami, shows 68% homology with vasoactive intestinal peptide (VIP). Since VIP stimulates amylase secretion from the pancreas, we investigated the effect of PACAP and VIP on rat pancreatic exocrine secretion after intravenous injections of PACAP-27, PACAP-38, or VIP at doses of 2.5, 5 or 10 nmol/kg. Results showed: 1) Bolus injection of PACAP stimulated pancreatic amylase and protein secretions in a dose-dependent manner; and 2) Stimulation of amylase secretion with 10 nmol/kg of PACAP-27 was greater than that induced with the same dose of VIP or PACAP-38 (p less than 0.05).  相似文献   

18.
Heparin inhibited the adenylate cyclase activity of semipurified rat pancreatic plasma membranes stimulated by hormones and by Gpp(NH)p but not by fluoride or when in the persistently active state. When observed, the inhibition was rapid and sustained. It was of a noncompetitive type and never exceeded 20% for secretin. The inhibition of Gpp(NH)p-stimulated activity was more pronounced (48% inhibition at a heparin concentration of 50 μg/ml). For the C-terminal octapeptide of pancreozymin (CCK-8)-stimulated adenylate cyclase, the inhibition amounted to 93% at 50 μg/ml. This inhibition was competitive at low heparin concentration and of a mixed type above 10 μg/ml. Besides, heparin inhibited (I50 = 6 μg/ml) the binding of peptides of the CCK family to their specific receptors without affecting the apparent Kd value of binding. Taken together, these relatively specific effects of heparin gave evidence in favor of the existence of CCK spare receptors. Dextran sulfate was more potent than heparin as an inhibitor of adenylate cyclase activation while chondroitin-4-sulfate and chondroitin-6-sulfate were ineffective. Dansylated pancreatic plasma membranes exhibited characteristics of adenylate cyclase activation by CCK-8 which were similar to those found for untreated membranes exposed to heparin.  相似文献   

19.
Crude preparations of secretin or pancreozymin increased and at higher concentrations decreased guanylate cyclase (GTP pyophosphate-lyase, EC 4.6.1.2) activity from soluble and particulate fractions of rat liver homogenates. Partially purified and synthetic secretin were without effect as was the biologically active octapeptide fragment of pancreozymin. The active contaminants in these preparations survived boiling, saponification, and treatment with phospholipase A, trypsin and neuraminidase C. The activity was extractable with chloroform/methanol and did not survive ashing. Eight bile salt contaminants in crude secretin were obtained with thin-layer chromatography. Two of the contaminating bile salts that increased liver particulate guanylate cyclase activity were identified as taurodeoxycholate and either glycochenodeoxycholate or glycodeoxycholate; taurocholate was inhibitory. The sodium salts of cholate, deoxycholate, chenodeoxycholate and their glycine-or taurine-conjugated forms either increased or decreased particulate and soluble rat liver guanylate cyclase activity depending upon their concentration. Thus, the previously reported stimulatory and inhibitory effects of secretin and pancreozymin preparations on guanylate cyclase activity are probable attributable to their bile salt contaminants.  相似文献   

20.
ADP-ribosylation by cholera toxin of the guanine nucleotide binding regulatory protein (Gs) of rat liver membrane adenylate cyclase was inhibited by 0.1-1 mM MDL 12330A or 0.1-1 mM chlorpromazine. Basal as well as cholera toxin activated adenylate cyclase activity in liver membranes was also inhibited by the two drugs. NAD glycohydrolase activity and self-ADP-ribosylation of cholera toxin were also inhibited by MDL 12330A and chlorpromazine. These effects of MDL 12330A and chlorpromazine may be related to their effects on cholera toxin-induced fluid secretion in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号