首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling.  相似文献   

2.
Although DNA in eukaryotes is packaged in nucleosomes, it remains vulnerable to oxidative damage that can result from normal cellular metabolism, ionizing radiation, and various chemical agents. Oxidatively damaged DNA is repaired in a stepwise fashion via the base excision repair (BER) pathway, which begins with the excision of damaged bases by DNA glycosylases. We reported recently that the human DNA glycosylase hNTH1 (human Endonuclease III), a member of the HhH GpG superfamily of glycosylases, can excise thymine glycol lesions from nucleosomes without requiring or inducing nucleosome disruption; optimally oriented lesions are excised with an efficiency approaching that seen for naked DNA [1]. To determine if this property is shared by human DNA glycoylases in the Fpg/Nei family, we investigated the activity of NEIL1 on defined nucleosome substrates. We report here that the cellular concentrations and apparent kcat/KM ratios for hNTH1 and NEIL1 are similar. Additionally, after adjustment for non-specific DNA binding, hNTH1 and NEIL1 proved to have similar intrinsic activities toward nucleosome substrates. However, NEIL1 and hNTH1 differ in that NEIL1 binds undamaged DNA far more avidly than hNTH1. As a result, hNTH1 is able to excise both accessible and sterically occluded lesions from nucleosomes at physiological concentrations, while the high non-specific DNA affinity of NEIL1 would likely hinder its ability to process sterically occluded lesions in cells. These results suggest that, in vivo, NEIL1 functions either at nucleosome-free regions (such as those near replication forks) or with cofactors that limit its non-specific binding to DNA.  相似文献   

3.
Each day, approximately 20,000 oxidative lesions form in the DNA of every nucleated human cell. The base excision repair (BER) enzymes that repair these lesions must function in a chromatin milieu. We have determined that the DNA glycosylase hNTH1, apurinic endonuclease (APE), and DNA polymerase β (Pol β), which catalyze the first three steps in BER, are able to process their substrates in both 601- and 5S ribosomal DNA (rDNA)-based nucleosomes. hNTH1 formed a discrete ternary complex that was displaced by the addition of APE, suggesting an orderly handoff of substrates from one enzyme to the next. In contrast, DNA ligase IIIα-XRCC1, which completes BER, was appreciably active only at concentrations that led to nucleosome disruption. Ligase IIIα-XRCC1 was also able to bind and disrupt nucleosomes containing a single base gap and, because of this property, enhanced both its own activity and that of Pol β on nucleosome substrates. Collectively, these findings provide insights into rate-limiting steps that govern BER in chromatin and reveal a unique role for ligase IIIα-XRCC1 in enhancing the efficiency of the final two steps in the BER of lesions in nucleosomes.  相似文献   

4.
We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.  相似文献   

5.
6.
7.
Condensation of DNA in the nucleosome takes advantage of its double-helical architecture. The DNA deforms at sites where the base pairs face the histone octamer. The largest so-called kink-and-slide deformations occur in the vicinity of arginines that penetrate the minor groove. Nucleosome structures formed from the 601 positioning sequence differ subtly from those incorporating an AT-rich human α-satellite DNA. Restraints imposed by the histone arginines on the displacement of base pairs can modulate the sequence-dependent deformability of DNA and potentially contribute to the unique features of the different nucleosomes. Steric barriers mimicking constraints found in the nucleosome induce the simulated large-scale rearrangement of canonical B DNA to kink-and-slide states. The pathway to these states shows nonharmonic behavior consistent with bending profiles inferred from AFM measurements.  相似文献   

8.
The ability of DNA-binding proteins to recognize their cognate sites in chromatin is restricted by the structure and dynamics of nucleosomal DNA, and by the translational and rotational positioning of the histone octamer. Here, we use six different pyrrole-imidazole polyamides as sequence-specific molecular probes for DNA accessibility in nucleosomes. We show that sites on nucleosomal DNA facing away from the histone octamer, or even partially facing the histone octamer, are fully accessible and that nucleosomes remain fully folded upon ligand binding. Polyamides only failed to bind where sites are completely blocked by interactions with the histone octamer. Removal of the amino-terminal tails of either histone H3 or histone H4 allowed these polyamides to bind. These results demonstrate that much of the DNA in the nucleosome is freely accessible for molecular recognition in the minor groove, and also support a role for the amino-terminal tails of H3 and H4 in modulating accessibility of nucleosomal DNA.  相似文献   

9.
A coarse-grained model of the nucleosome is introduced to investigate the dynamics of force-induced unwrapping of DNA from histone octamers. In this model, the DNA is treated as a charged, discrete worm-like chain, and the octamer is treated as a rigid cylinder carrying a positively charged superhelical groove that accommodates 1.7 turns of DNA. The groove charges are parameterized to reproduce the nonuniform histone/DNA interaction free energy profile and the loading rate-dependent unwrapping forces, both obtained from single-molecule experiments. Brownian dynamics simulations of the model under constant loading conditions reveal that nucleosome unraveling occurs in three distinct stages. At small extensions, the flanking DNA exhibits rapid unwrapping-rewrapping (breathing) dynamics and the octamer flips ~180° and moves toward the pulling axis. At intermediate extensions, the outer turn of DNA unwraps gradually and the octamer swivels about the taut linkers and flips a further ~90° to orient its superhelical axis almost parallel to the pulling axis. At large extensions, a portion of the inner turn unwraps abruptly with a notable rip in the force-extension plot and a >90° flip of the octamer. The remaining inner turn unwraps reversibly to leave a small portion of DNA attached to the octamer despite extended pulling. Our simulations further reveal that the nonuniform histone/DNA interactions in canonical nucleosomes serve to: stabilize the inner turn against unraveling while enhancing the breathing dynamics of the nucleosome and prevent dissociation of the octamer from the DNA while facilitating its mobility along the DNA. Thus, the modulation of the histone/DNA interactions could constitute one possible mechanism for regulating the accessibility of the nucleosome-wound DNA sequences.  相似文献   

10.
11.
12.
13.
J V Kosmoski  M J Smerdon 《Biochemistry》1999,38(29):9485-9494
A strategy was developed to assemble nucleosomes specifically damaged at only one site and one structural orientation. The most prevalent UV photoproduct, a cis-syn cyclobutane thymine dimer (cs CTD), was chemically synthesized and incorporated into a 30 base oligonucleotide harboring the glucocorticoid hormone response element. This oligonucleotide was assembled into a 165 base pair double stranded DNA molecule with nucleosome positioning elements on each side of the cs CTD-containing insert. Proton NMR verified that the synthetic photoproduct is the cis-syn stereoisomer of the CTD. Moreover, two different pyrimidine dimer-specific endonucleases cut approximately 90% of the dsDNA molecules. This cleavage is completely reversed by photoreactivation with E. coli UV photolyase, further demonstrating the correct stereochemistry of the photoproduct. Nucleosomes were reconstituted by histone octamer exchange from chicken erythocyte core particles, and contained a unique translational and rotational setting of the insert on the histone surface. Hydroxyl radical footprinting demonstrates that the minor groove at the cs CTD is positioned away from the histone surface about 5 bases from the nucleosome dyad. Competitive gel-shift analysis indicates there is a small increase in histone binding energy required for the damaged fragment (DeltaDeltaG approximately 0.15 kcal/mol), which does not prevent complete nucleosome loading under our conditions. Finally, folding of the synthetic DNA into nucleosomes dramatically inhibits cleavage at the cs CTD by T4 endonuclease V and photoreversal by UV photolyase. Thus, specifically damaged nucleosomes can be experimentally designed for in vitro DNA repair studies.  相似文献   

14.
Solution structures of nucleosomes containing a human histone variant, H2A.Z.1, were measured by small-angle X-ray and neutron scatterings (SAXS and SANS). SAXS revealed that the outer shape, reflecting the DNA shape, of the H2A.Z.1 nucleosome is almost the same as that of the canonical H2A nucleosome. In contrast, SANS employing a contrast variation technique revealed that the histone octamer of the H2A.Z.1 nucleosome is smaller than that of the canonical nucleosome. The DNA within the H2A.Z.1 nucleosome was more susceptible to micrococcal nuclease than that within the canonical nucleosome. These results suggested that the DNA is loosely wrapped around the histone core in the H2A.Z.1 nucleosome.  相似文献   

15.
The multisubunit SWI/SNF and RSC complexes utilize energy derived from ATP hydrolysis to mobilize nucleosomes and render the DNA accessible for various nuclear processes. Here we test the idea that remodeling involves intermediates with mobile DNA bulges or loops within the nucleosome by cross-linking the H2A N- or C-terminal tails together to generate protein "loops" that constrict separation of the DNA from the histone surface. Analyses indicate that this intranucleosomal cross-linking causes little or no change in remodeling-dependent exposure of DNA sequences within the nucleosome to restriction enzymes. However, cross-linking inhibits nucleosome mobilization and blocks complete movement of nucleosomes to extreme end positions on the DNA fragments. These results are consistent with evidence that nucleosome remodeling involves intermediates with DNA loops on the nucleosome surface but indicate that such loops do not freely diffuse about the surface of the histone octamer. We propose a threading model for movement of DNA loops around the perimeter of the nucleosome core.  相似文献   

16.
Previous studies have shown that drugs which bind in the DNA minor groove reduce the curvature of bent DNA. In this article, we examined the effects of these drugs on the nucleosome assembly of DNA molecules that display different degrees of intrinsic curvature. DAPI (4,6-diamidino-2-phenylindole) inhibited the assembly of a histone octamer onto a 192-base pair circular DNA fragment from Caenorhabditis elegans and destabilized a nucleosome that was previously assembled on this segment. The inhibitory effect was highly selective since it was not seen with nonbent molecules, bent molecules with noncircular shapes, or total genomic DNA. This marked template specificity was attributed to the binding of the ligand to multiple oligo A-tracts distributed over the length of the fragment. A likely mechanism for the effect is that the bound ligand prevents the further compression of the DNA into the minor groove which is required for assembly of DNA into nucleosomes. To further characterize the effects of the drug on chromatin formation, a nucleosome was assembled onto a 322-base pair DNA fragment that contained the circular element and a flanking nonbent segment of DNA. The position of the nucleosome along the fragment was then determined using a variety of nuclease probes including exonuclease III, micrococcal nuclease, DNase I, and restriction enzymes. The results of these studies revealed that the nucleosome was preferentially positioned along the circular element in the absence of DAPI but assembled onto the nonbent flanking sequence in the presence of the drug. DAPI also induced the directional movement of the nucleosome from the circular element onto the nonbent flanking sequence when a nucleosome preassembled onto this template was exposed to the drug under physiologically relevant conditions.  相似文献   

17.
Previous experiments have shown that the locations of the histone octamer on DNA molecules of 140 to 240 base-pairs (bp) are influenced strongly by the nucleotide sequence. Here we have studied the locations of the histone octamer on a relatively long DNA molecule of 860 bp, using two different nucleases, micrococcal and DNAase I. Data were obtained from both the protein--DNA complexes and from the naked DNA at single-bond resolution, and then were analyzed by densitometry to yield plots of differential cleavage, which show clearly the changes in cutting due to the addition of protein. Our results show that the placement of core histones on the 860 bp molecule is definitely non-random. The digestion data provide evidence for five nucleosome cores, the centers of which lie in defined locations. In all but one of these protein--DNA complexes, the DNA adopts a unique, highly preferred rotational setting with respect to the protein surface. Another protein--DNA complex is unusual in that it protects 200 bp from digestion, yet is cut in its very center as if it were split into two parts. The apparent average twist of the DNA within all of these protein--DNA complexes is 10.2(+/- 0.1) bp, as measured by the periodicity of DNAase I digestion. This value is in excellent agreement with the twist of 10.21(+/- 0.05) bp deduced from the periodicity of sequence content in chicken nucleosome core DNA. In addition, we observe a discontinuity in the periodic cutting by DNAase I of about -1 to -3 bonds in going from any nucleosome core to the next. The most plausible interpretation of this discontinuity is that it reflects the angle by which adjacent protein--DNA complexes are aligned. Thus, any nucleosome may be related to its neighbor by a left-handed rotation in space of -1/10.2 to -3/10.2 helix turns, or -35 degrees to -105 degrees. Repeated many times, this operation would build a long, left-handed helix of nucleosomes similar to that described by many workers for the packing of nucleosomes in chromatin. In order to look for any long-range influences on the positioning of the histone octamer in the 860 bp molecule (as would be expected if the nucleosomes have to fit into some higher-order structure), we have examined the locations of the histone octamer on five different isolated short fragments of the 860-mer, all of nucleosomal length.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
In eukaryotes, base excision repair (BER) is responsible for the repair of oxidatively generated lesions. The mechanism of BER on naked DNA substrates has been studied in detail, but how it operates on chromatin remains unclear. Here we have studied the mechanism of BER by introducing a single 8-oxo-7,8-dihydroguanine (8-oxoG) lesion in the DNA of reconstituted positioned conventional and histone variant H2A.Bbd nucleosomes. We found that 8-oxoguanine DNA glycosylase, apurinic/apyrimidinic endonuclease, and polymerase beta activities were strongly reduced in both types of nucleosomes. In conventional nucleosomes SWI/SNF stimulated the processing of 8-oxoG by each one of the three BER repair factors to efficiencies similar to those for naked DNA. Interestingly, SWI/SNF-induced remodeling, but not mobilization of conventional nucleosomes, was required to achieve this effect. A very weak effect of SWI/SNF on the 8-oxoG BER removal in H2A.Bbd histone variant nucleosomes was observed. The possible implications of our data for the understanding of in vivo mechanisms of BER are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号