首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of cysteine protease inhibitors to cells expressing amyloid precursor protein (APP) resulted in a >2-fold increase in appearance of the secreted extracellular domain of APP in the media. This was accounted for by increased flux of APP into the secretory pathway since protease inhibitors also caused a twofold increase in newly translated, incompletely glycosylated APP detected by pulse-labeling. These results show that a portion of newly translated APP molecules are normally rapidly degraded by cysteine protease(s) but can enter the secretory pathway when degradation is inhibited. Newly translated APP molecules are thus still competent for posttranslational processing in distal cellular compartments. Their degradation thus may not result from misfolding but merely susceptibility to an endoplasmic reticulum localized cysteine protease.  相似文献   

2.
We have analyzed the metabolic pathway of maturation of APP751 in stably transfected 293 cells, in the presence of either of the cysteine protease inhibitors leupeptin or E-64. Metabolic labeling, followed by immunoprecipitation at various times in the chase with a rabbit polyclonal antibody (anti-BX6) specific to the carboxyl-terminal end of amyloid precursor protein (APP), revealed the accumulation of a novel approximately 22-kDa carboxyl-terminal fragment (22-CTF) in the inhibitor-treated cells. This fragment, which was not detectable in untreated cells, was immunoprecipitated by four separate antibodies to the carboxyl-terminal region of APP as well as by polyclonal and monoclonal antibodies specific to the first 16 amino acids of the beta-peptide domain. Antibodies to the amino-terminal end of APP do not, however, recognize the fragment. Co-treatment of the inhibitor-treated cells with either of the lysosomotropic agents chloroquine or ammonium chloride completely blocked the generation of this fragment but did not significantly affect APP maturation or secretion. All, however, slowed the intracellular turnover of the cell-associated, approximately 9-kDa carboxyl-terminal fragment (c-CTF) produced during constitutive secretion. Densitometric analyses of these results suggest that this non-secretory pathway of APP degradation, mediated by cysteine proteases in an intracellular acidic compartment, accounts for approximately 70% of total APP metabolism and that a key processing intermediate in this pathway is a 22-kDa, beta-peptide-containing APP carboxyl-terminal fragment. It is possible that inefficient degradation of such an intermediate leads to the formation of aggregating beta-peptide.  相似文献   

3.
In 38C B lymphocytes, membrane IgM is expressed on the surface, whereas secretory IgM (sIgM) is rapidly degraded. Here, we localize this degradation and characterize the proteases involved in this process. Upon treatment with brefeldin A, degradation of sIgM in 38C cells was strongly inhibited, as was secretion from the sIgM-secreting D2 hybridoma. Moreover, the brefeldin A-induced Golgi resorption resulted in galactosylation of sIgM and partial resistance to endoglycosidase H. However, sIgM avoided degradation neither due to modified terminal glycosylation nor as a consequence of the brefeldin A-induced altered milieu of the endoplasmic reticulum. When these modifications were prevented by inhibiting retrograde transport with nocodazole or by abrogating terminal glycosylation with swainsonine, sIgM was still rescued from degradation. The unaffected breakdown in the presence of nocodazole also argued against recycling of sIgM to be degraded in the endoplasmic reticulum. Furthermore, upon removal of brefeldin A, degradation of galactosylated sIgM resumed in 38C cells, as did secretion from D2 cells. These results indicate that functional export of proteins from the endoplasmic reticulum is a prerequisite for sIgM degradation. Biochemical characterization of this novel postendoplasmic reticulum/pre-trans-Golgi proteolytic pathway included application of inhibitors to a broad spectrum of proteases. Among the compounds tested, only calpain inhibitor I exerted strong inhibition. The involvement of cysteine protease(s) in the degradation of sIgM was corroborated by the inhibitory effect of diamide. We conclude that B lymphocytes avoid secretion by active and selective targeting of sIgM to a developmentally regulated postendoplasmic reticulum degradation pathway in which degradation is mediated by a cysteine protease.  相似文献   

4.
Radiosequence analysis of peptide fragments of the estrogen receptor (ER) from MCF-7 human breast cancer cells has been used to identify cysteine 530 as the site of covalent attachment of an estrogenic affinity label, ketononestrol aziridine (KNA), and an antiestrogenic affinity label, tamoxifen aziridine (TAZ). ER from MCF-7 cells was covalently labeled with [3H]TAZ or [3H]KNA and purified to greater than 95% homogeneity by immunoadsorbent chromatography. Limit digest peptide fragments, generated by prolonged exposure of the labeled receptor to trypsin, cyanogen bromide, or Staphylococcus aureus V8 protease, were purified to homogeneity by high performance liquid chromatography (HPLC), and the position of the labeled residue was determined by sequential Edman degradation. With both aziridines, the labeled residue was at position 1 in the tryptic peptide, position 2 in the cyanogen bromide peptide, and position 7 in the V8 protease peptide. This localizes the site of labeling to a single cysteine at position 530 in the receptor sequence. The identity of cysteine as the site of labeling was confirmed by HPLC comparison of the TAZ-labeled amino acid (as the phenylthiohydantoin and phenylthiocarbamyl derivatives) and the KNA-labeled amino acid (as the phenylthiocarbamyl derivative) with authentic standards prepared by total synthesis. Cysteine 530 is located in the hormone binding domain of the receptor, near its carboxyl terminus. This location is consistent with earlier studies using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to analyze the size of the proteolytic fragments containing the covalent labeling sites for TAZ and KNA and the antigen recognition sites for monoclonal antibodies. The fact that both the estrogenic and antiestrogenic affinity labeling agents react covalently with the same cysteine indicates that differences in receptor-agonist and receptor-antagonist complexes do not result in differential covalent labeling of amino acid residues in the hormone binding domain.  相似文献   

5.
The carboxy-terminal ends of the 40- and 42-amino acids amyloid beta-protein (Abeta) may be generated by the action of at least two different proteases termed gamma(40)- and gamma(42)-secretase, respectively. To examine the cleavage specificity of the two proteases, we treated amyloid precursor protein (APP)-transfected cell cultures with several dipeptidyl aldehydes including N-benzyloxycarbonyl-Leu-leucinal (Z-LL-CHO) and the newly synthesized N-benzyloxycarbonyl-Val-leucinal (Z-VL-CHO). All dipeptidyl aldehydes tested inhibited production of both Abeta1-40 and Abeta1-42. Changes in the P1 and P2 residues of these aldehydes, however, indicated that the amino acids occupying these positions are important for the efficient inhibition of gamma-secretases. Peptidyl aldehydes inhibit both cysteine and serine proteases, suggesting that the two gamma-secretases belong to one of these mechanistic classes. To differentiate between the two classes of proteases, we treated our cultures with the specific cysteine protease inhibitor E-64d. This agent inhibited production of secreted Abeta1-40, with a concomitant accumulation of its cellular precursor indicating that gamma(40)-secretase is a cysteine protease. In contrast, this treatment increased production of secreted Abeta1-42. No inhibition of Abeta production was observed with the potent calpain inhibitor I (acetyl-Leu-Leu-norleucinal), suggesting that calpain is not involved. Together, these results indicate that gamma(40)-secretase is a cysteine protease distinct from calpain, whereas gamma(42)-secretase may be a serine protease. In addition, the two secretases may compete for the same substrate. Dipeptidyl aldehyde treatment of cultures transfected with APP carrying the Swedish mutation resulted in the accumulation of the beta-secretase C-terminal APP fragment and a decrease of the alpha-secretase C-terminal APP fragment, indicating that this mutation shifts APP cleavage from the alpha-secretase site to the beta-secretase site.  相似文献   

6.
Analysis of the fate of HIV-1 envelope protein gp160 (Env) has shown that newly synthesized proteins may be degraded within the biosynthetic pathway and that this degradation may take place in compartments other than the lysosomes. The fate of newly synthesized Env was studied in living BHK-21 cells with the recombinant vaccinia virus expression system. We found that gp160 not only undergoes physiological endoproteolytic cleavage, producing gp120, but is also degraded, producing proteolytic fragments of 120 kDa to 26 kDa in size, as determined by SDS/PAGE in non reducing conditions. Analysis of the 120-kDa proteolytic fragment, and comparison with gp120, showed that it is composed of peptides linked by disulfides bonds and lacks the V3-loop epitope and the C-terminal domain of gp120 (amino acids 506-516). A permeabilized cell system, with impaired transport of labeled Env from the endoplasmic reticulum (ER) to Golgi compartments, was developed to determine the site of degradation and to define some biochemical characteristics of the intracellular degradation process. In the semipermeable BHK-21 cells, there was: (a) no gp120 production (b), a progressive decrease in the amount of newly synthesized gp160 and a concomitant increase in the amount of a 120-kDa proteolytic fragment. This fragment had the same biochemical characteristics as the 120-kDa proteolytic fragment found in living nonpermeabilized cells, and (c) susceptibility of the V3 loop. This degradation process occurred in the ER, as shown by both biochemical and indirect immunofluorescence analysis. Furthermore, there was evidence that changes in redox state are involved in the ER-dependent envelope degradation pathway because adding reducing agents to permeabilized cells caused dose-dependent degradation of the 120-kDa proteolytic fragment and of the remaining gp160 glycoprotein. Thus our results provide direct evidence that regulated degradation of the HIV-1 envelope glycoprotein may take place in the ER of infected cells.  相似文献   

7.
In avian species, a glycoprotein homologous to mammalian ZPC is synthesized in the granulosa cells of developing follicles. We have previously reported that the newly synthesized ZPC (proZPC) in the granulosa cells is cleaved at the consensus furin cleavage site to generate mature ZPC prior to secretion. In the present study, we examined the role of asparagine (N)-linked oligosaccharides in the proteolytic processing of proZPC and the subsequent secretion of ZPC by using site-directed mutagenesis of the consensus sequence for N-glycosylation, and tunicamycin, an inhibitor for N-glycosylation of glycoprotein. Western blot analysis demonstrated that tunicamycin did not block either proteolytic cleavage of proZPC or the subsequent ZPC secretion. Moreover, a site-directed mutant that possesses a mutated sequence for N-glycosylation was efficiently secreted from the cells. These results indicate that proteolytic cleavage of proZPC, and the subsequent ZPC secretion occur in the absence of N-linked oligosaccharides. Therefore, the addition of N-glycans to ZPC polypeptide is not required for quail ZPC secretion.  相似文献   

8.
A key factor in Alzheimer's disease (AD) is the beta-secretase activity that is required for the production of beta-amyloid (Abeta) peptide from its amyloid precursor protein (APP) precursor. In this study, the majority of Abeta secretion from neuronal chromaffin cells was found to occur via the regulated secretory pathway, compared with the constitutive secretory pathway; therefore, beta-secretase activity in the regulated secretory pathway was examined for the production and secretion of Abeta in chromaffin cells obtained from in vivo adrenal medullary tissue. The presence of Abeta(1-40) in APP-containing chromaffin vesicles, which represent regulated secretory vesicles, was demonstrated by radioimmunoassay (RIA) and reverse-phase high-performance liquid chromatography. These vesicles also contain Abeta(1-42), measured by RIA. Significantly, regulated secretion of Abeta(1-40) from chromaffin cells represented the majority of secreted Abeta (> 95% of total secreted Abeta), compared with low levels of constitutively secreted Abeta(1-40). These results indicate the importance of Abeta production and secretion in the regulated secretory pathway as a major source of extracellular Abeta. Beta-secretase activity in isolated chromaffin vesicles was detected with the substrate Z-Val-Lys-Met-/MCA (methylcoumarinamide) that contains the beta-secretase cleavage site. Optimum beta-secretase activity in these vesicles required reducing conditions and acidic pH (pH 5-6), consistent with the in vivo intravesicular environment. Evidence for cysteine protease activity was shown by E64c inhibition of Z-Val-Lys-Met-MCA-cleaving activity, and E64c inhibition of Abeta(1-40) production in isolated chromaffin vesicles. Chromatography resolved the beta-secretase activity into two distinct proteolytic pathways consisting of: (i) direct cleavage of the beta-secretase site at Met-/Asp by two cysteine proteolytic activities represented by peaks Il-A and Il-B, and (ii) an aminopeptidase-dependent pathway represented by peak I cysteine protease activity that cleaves between Lys-/Met, followed by Met-aminopeptidase that would generate the beta-secretase cleavage site. Treatment of chromaffin cells in primary culture with the cysteine protease inhibitor E64d reduced the production of the beta-secretase product, a 12-14 kDa C-terminal APP fragment. In addition, BACE 1 and BACE 2 were detected in chromaffin vesicles; BACE 1 represented a small fraction of total beta-secretase activity in these vesicles. These results illustrate that multiple cysteine proteases, in combination with BACE 1, contribute to beta-secretase activity in the regulated secretory pathway. These results complement earlier findings for BACE 1 as beta3-secretase for Abeta production in the constitutive secretory pathway that provides basal secretion of Abeta into conditioned media. These findings suggest that drug inhibition of several proteases may be required for reducing Abeta levels as a potential therapeutic approach for AD.  相似文献   

9.
Recent results using proteases suggest that dexamethasone 21-mesylate (Dex-Mes) labeling of the rat hepatoma tissue culture (HTC) cell glucocorticoid receptor occurs at one or a few closely grouped cysteine residues (Simons, S.S., Jr. (1987) J. Biol. Chem. 262, 9669-9675). In this study, a more direct approach was used both to establish that only one cysteine is labeled by [3H]Dex-Mes and to identify the amino acid sequence containing this labeled cysteine. Various analytical procedures did not provide the purification of the extremely hydrophobic Staphylococcus aureus V8 protease digestion fragment that is required for unique amino acid sequencing data. Therefore, Edman degradation was performed on the limit protease digest mixtures which appeared to contain only one 3H-labeled peptide. These degradation experiments revealed the number of amino acid residues between the NH2 terminus of each peptide and the [3H]Dex-Mes-labeled cysteine. A comparison of these amino acid spacings with the published amino acid sequence of the HTC cell glucocorticoid receptor (Miesfeld, R., Rusconi, S., Godowski, P. J., Maler, B. A., Okret, S., Wikstom, A-C., Gustafsson, J-A., and Yamamoto, K. R. (1986) Cell 46, 389-399) indicated that the one cysteine labeled by [3H]Dex-Mes is Cys-656. Further analysis of the receptor sequence for the presence of the observed grouping of proteolytic cleavage sites, but without any preconditions as to which amino acid was labeled, gave Asp-122 and Cys-656 as the only two possibilities. Potential labeling of Asp-122 could be eliminated on the basis of immunological and genetic evidence. We, therefore, conclude that the single Dex-Mes-labeled site of the HTC cell glucocorticoid receptor has been identified as Cys-656. Since several lines of evidence indicate that [3H]Dex-Mes labeling of the receptor occurs in the steroid binding site, Cys-656 is the first amino acid which can be directly associated with a particular property of the glucocorticoid receptor.  相似文献   

10.
A wide interest in amyloid precursor protein (APP) metabolism stems from the fact that increased amounts of amyloid beta peptide (Abeta), arising through proteolytic processing of APP, likely play a significant role in Alzheimer's disease. As Alzheimer's disease pathology is limited almost exclusively to the human species, we established human primary neuron cultures to address the possibility of distinctive APP processing in human CNS neurons. In the present study, we investigate the role of organelles and protein trafficking in APP metabolism. Using brefeldin A, we failed to detect APP processing into Abeta in the endoplasmic reticulum. Monensin and the lysomotropic agents, NH4Cl and chloroquine, revealed a bypass pH-dependent secretory pathway in a compartment between the endoplasmic reticulum and the medial Golgi, resulting in the secretion of full-length APP. Colchicine treatment resulting in the loss of neurites inhibited processing of APP through the secretory, but not the endosomal-lysosomal, pathway of APP metabolism. The serine protease inhibitor, leupeptin, indicates a role for lysosomes in APP, Abeta, and APP C-terminal fragment turnover. These results demonstrate that the regulation of APP metabolism in human neurons differs considerably from those reported in rodent CNS primary neuron cultures or continuously dividing cell types.  相似文献   

11.
When beef heart mitochondrial F1-ATPase is photoirradiated in the presence of 2-azido[alpha-32P]adenosine diphosphate, the beta subunit of the enzyme is preferentially photolabeled [Dalbon, P., Boulay, F., & Vignais, P. V. (1985) FEBS Lett. 180, 212-218]. The site of photolabeling of the beta subunit has been explored. After cyanogen bromide cleavage of the photolabeled beta subunit, only the peptide fragment extending from Gln-293 to Met-358 was found to be labeled. This peptide was isolated and digested by trypsin or Staphylococcus aureus V8 protease. Digestion by trypsin yielded four peptides, one of which spanned residues Ala-338-Arg-356 and contained all the bound radioactivity. When trypsin was replaced by V8 protease, a single peptide spanning residues Leu-342-Met-358 was labeled. Edman degradation of the two labeled peptides showed that radioactivity was localized on the following four amino acids: Leu-342, Ile-344, Tyr-345, and Pro-346.  相似文献   

12.
Cathepsin V (L2), a lysosomal cysteine protease, is a member of cathepsin family, relating to cancer invasion and metastasis. Cathepsin V contains two predicted N-glycosylation sites, but it has not been reported whether cathepsin V is glycosylated or not. In this study, we clarified the role of N-glycosylation of cathepsin V for its functions. We demonstrated that cathepsin V is N-glycosylated at both Asn221 and Asn292 using mass spectrometry and site-directed mutagenesis. N-glycosylation of cathepsin V was important for transportation to lysosome, secretion, and activity in HT1080 cells. These data demonstrated that functions of cathepsin V are controlled by N-glycosylation.  相似文献   

13.
The cardiac serine protease corin is the pro-atrial natriuretic peptide convertase. Corin is made as a zymogen, which is activated by proteolytic cleavage. Previous studies showed that recombinant human corin expressed in HEK 293 cells was biologically active, but activated corin fragments were not detectable, making it difficult to study corin activation. In this study, we showed that recombinant rat corin was activated in HEK 293 cells, murine HL-1 cardiomyocytes, and rat neonatal cardiomyocytes. In these cells, activated corin represented a small fraction of the total corin molecules. The activation of recombinant rat corin was inhibited by small molecule trypsin inhibitors but not inhibitors for matrix metalloproteinases or cysteine proteases, suggesting that a trypsin-like protease activated corin in these cells. Glycosidase digestion showed that rat and human corin proteins contained substantial N-glycans but little O-glycans. Treatment of HEK 293 cells expressing rat corin with tunicamycin prevented corin activation and inhibited its pro-atrial natriuretic peptide processing activity. Similar effects of tunicamycin on endogenous corin activity were found in HL-1 cells. Mutations altering the two N-glycosylation sites in the protease domain of rat corin prevented its activation in HEK 293 and HL-1 cells. Our results indicate that N-linked oligosaccharides play an important role in corin activation.  相似文献   

14.
The vacuolar class of (H+)-ATPases are highly sensitive to sulfhydryl reagents, such as N-ethylmaleimide. The cysteine residue which is responsible for inhibition of the coated vesicle (H+)-ATPase upon modification by N-ethylmalemide is located in subunit A and is able to form a disulfide bond with the cysteine moiety of cystine through an exchange reaction. This unique property distinguishes this cysteine residue from the remaining cysteine residues of the (H+)-ATPase. Using this reaction, we selectively labeled the cystine-reactive cysteine residue of subunit A with fluorescein-maleimide. After complete digestion of the labeled subunit A by V8 protease, a single labeled fragment of molecular mass 3.9 kDa was isolated and the amino-terminal sequence was determined. This fragment contains 2 cysteine residues, Cys240 and Cys254. Since Cys254 is conserved among all vacuolar (H+)-ATPases whereas Cys240 is not, it is likely that Cys254 is the residue which is responsible for the sensitivity of the vacuolar (H+)-ATPase to sulfhydryl reagents.  相似文献   

15.
We investigated biosynthesis, intracellular transport and release of beta-galactoside alpha-2,6-sialyltransferase in a dexamethasone-inducible rat hepatoma cell line. Confluent cells were induced by 10 microM dexamethasone for 24 h, and metabolically labelled with [35S]methionine/cysteine, followed by immunoprecipitation of sialyltransferase and electrophoretic/fluorographic analysis. The 35S-labelled enzyme was synthesized as a 46-kDa precursor, converted to an intermediate 47-kDa form after 1 h, and gradually to a mature form of 48 kDa within the following 3 h. By means of either tunicamycin inhibition of N-glycosylation or cleavage of N-glycans from isolated sialyltransferase using N-glycosidase F, the sizes of the precursor and the mature form were reduced to 41 kDa and 43 kDa, respectively. After a 4-h chase, treatment with endoglycosidase H revealed two distinct molecular forms of sialyltransferase, bearing either two N-acetyllactosamine-type or one oligomannose-type and one N-acetyllactosamine-type N-linked sugar chain. In addition, sialyltransferase became sensitive to neuraminidase digestion after a 4-h chase. The half-life of intracellular [35S]sialyltransferase was estimated at 3 h. A soluble form was detectable in the supernatant, 2 h after the pulse. Only 12% of the initially labelled sialyltransferase was found in the medium after 12 h, while 73% of the enzyme was degraded intracellularly. To characterize a possible intracellular degradation site, we studied intracellular transport in the presence of either secretion-blocking or acidotropic agents or protease inhibitors. Degradation was significantly delayed by all treatments. Our results show that sialyltransferase follows the secretory pathway as a membrane protein and is retained at a late Golgi stage. We suggest that the bulk of sialyltransferase in rat hepatoma cells is diverted to a post-Golgi degradation pathway. This route contrasts with the post-Golgi trafficking of beta-1,4-galactosyltransferase in HeLa cells, which is constitutively secreted [Strous, G. J. A. M. & Berger, E. G. (1982) J. Biol. Chem. 257, 7623-7628].  相似文献   

16.
Elucidation of Abeta-lowering agents that inhibit processing of the wild-type (WT) beta-secretase amyloid precursor protein (APP) site, present in most Alzheimer disease (AD) patients, is a logical approach for improving memory deficit in AD. The cysteine protease inhibitors CA074Me and E64d were selected by inhibition of beta-secretase activity in regulated secretory vesicles that produce beta-amyloid (Abeta). The regulated secretory vesicle activity, represented by cathepsin B, selectively cleaves the WT beta-secretase site but not the rare Swedish mutant beta-secretase site. In vivo treatment of London APP mice, expressing the WT beta-secretase site, with these inhibitors resulted in substantial improvement in memory deficit assessed by the Morris water maze test. After inhibitor treatment, the improved memory function was accompanied by reduced amyloid plaque load, decreased Abeta40 and Abeta42, and reduced C-terminal beta-secretase fragment derived from APP by beta-secretase. However, the inhibitors had no effects on any of these parameters in mice expressing the Swedish mutant beta-secretase site of APP. The notable efficacy of these inhibitors to improve memory and reduce Abeta in an AD animal model expressing the WT beta-secretase APP site present in the majority of AD patients provides support for CA074Me and E64d inhibitors as potential AD therapeutic agents.  相似文献   

17.
Proteases within secretory vesicles are required for conversion of neuropeptide precursors into active peptide neurotransmitters and hormones. This study demonstrates the novel cellular role of the cysteine protease cathepsin L for producing the (Met)enkephalin peptide neurotransmitter from proenkephalin (PE) in the regulated secretory pathway of neuroendocrine PC12 cells. These findings were achieved by coexpression of PE and cathepsin L cDNAs in PC12 cells with analyses of PE-derived peptide products. Expression of cathepsin L resulted in highly increased cellular levels of (Met)enkephalin, resulting from the conversion of PE to enkephalin-containing intermediates of 23, 18-19, 8-9, and 4.5 kDa that were similar to those present in vivo. Furthermore, expression of cathepsin L with PE resulted in increased amounts of nicotine-induced secretion of (Met)enkephalin. These results indicate increased levels of (Met)enkephalin within secretory vesicles of the regulated secretory pathway. Importantly, cathespin L expression was directed to secretory vesicles, demonstrated by colocalization of cathepsin L-DsRed fusion protein with enkephalin and chromogranin A neuropeptides that are present in secretory vesicles. In vivo studies also showed that cathepsin L in vivo was colocalized with enkephalin. The newly defined secretory vesicle function of cathepsin L for biosynthesis of active enkephalin opioid peptide contrasts with its function in lysosomes for protein degradation. These findings demonstrate cathepsin L as a distinct cysteine protease pathway for producing the enkephalin member of neuropeptides.  相似文献   

18.
The regulated secretory pathway of neurons is the major source of extracellular A beta that accumulates in Alzheimer's disease (AD). Extracellular A beta secreted from that pathway is generated by beta-secretase processing of amyloid precursor protein (APP). Previously, cysteine protease activity was demonstrated as the major beta-secretase activity in regulated secretory vesicles of neuronal chromaffin cells. In this study, the representative cysteine protease activity in these secretory vesicles was purified and identified as cathepsin B by peptide sequencing. Immunoelectron microscopy demonstrated colocalization of cathepsin B with A beta in these vesicles. The selective cathepsin B inhibitor, CA074, blocked the conversion of endogenous APP to A beta in isolated regulated secretory vesicles. In chromaffin cells, CA074Me (a cell permeable form of CA074) reduced by about 50% the extracellular A beta released by the regulated secretory pathway, but CA074Me had no effect on A beta released by the constitutive pathway. Furthermore, CA074Me inhibited processing of APP into the COOH-terminal beta-secretase-like cleavage product. These results provide evidence for cathepsin B as a candidate beta-secretase in regulated secretory vesicles of neuronal chromaffin cells. These findings implicate cathepsin B as beta-secretase in the regulated secretory pathway of brain neurons, suggesting that inhibitors of cathepsin B may be considered as therapeutic agents to reduce A beta in AD.  相似文献   

19.
Vesicular trafficking plays a pivotal role in the virulence of the enteric protozoan parasite Entamoeba histolytica. In the present study, we showed that one isotype of the small GTPase Rab11, EhRab11B, plays a central role in the secretion of a major virulence factor, cysteine proteases. EhRab11B did not colocalize with markers for the endoplasmic reticulum, early endosomes and lysosomes, but was partially associated with non-acidified vesicles in the endocytic pathway, likely recycling endosomes. Overexpression of EhRab11B resulted in a remarkable increase in both intracellular and secreted cysteine protease activity, concomitant with an augmentation of cytolytic activity as demonstrated by an increased ability to destroy mammalian cells. The oversecretion of cysteine proteases with EhRab11B overexpression was neither sensitive to brefeldin A nor specific to a certain cysteine protease species (e.g. CP1, 2 or 5), suggesting that these three major cysteine proteases are trafficked via an EhRab11B-associated secretory pathway, which is distinct from the classical brefeldin-sensitive pathway. Overexpression of EhRab11B also enhanced exocytosis of the incorporated fluid-phase marker, supporting the notion that it is involved in recycling. This is the first report demonstrating that Rab11 plays a central role in the transport and secretion of pathogenic factors.  相似文献   

20.
A plasmid containing the human HSP70 gene was used to transfect and express the protein in Escherichia coli. The bacterial product was a fusion protein containing 640 amino acids of HSP70, plus 33 additional NH2 terminal amino acids; 12 from the bacterial expression vector and 21 from a 5' human sequence that is not normally translated. It was partially purified by ion-exchange and ATP-Sepharose affinity column chromatography. The bacterially produced human HSP70 protein was then compared with HSP70 obtained from cultured 293 cells. Both shared the same staphylococcal V8 protease peptide fragment pattern, ATP binding, and a weak ATPase activity (about 10-15 nmol ATP hydrolyzed per milligram protein per minute at 30 degrees C). The bacterially produced human HSP70 protein differed in its V8 protease pattern with an E. coli ATP-binding protein that corresponded in molecular mass to the E. coli dnaK gene product. Mutants in the human HSP70 gene were constructed which significantly reduced a predicted major alpha-helical domain in the HSP70 molecule that has partial homology to an ATP-binding site of several protein kinases. One HSP70 mutant clone contained a deletion of 20% at the NH2 terminus, and expressed a 57-kDa product, while the other was missing the middle 50% of the gene (40-kDa product). Neither protein fragment bound to an ATP affinity column, suggesting that ATP binding to HSP70 may be conformationally affected by a region about 20% internal to the NH2 terminal end of the molecule. Recently, a similar location of the ATP-binding site has been reported by Milarski and Morimoto (27).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号