首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although cannabinoid-induced behavioral sensitization and cross-sensitization with opiates has been recently demonstrated, no information is available on the associated state and responsiveness of dopamine (DA) transmission in the nucleus accumbens (NAc) shell and core. In this study we investigate by means of dual probe microdialysis, the effect of exposure to a sensitizing regimen of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and morphine on the extracellular concentrations of DA under basal conditions and after challenge with Delta(9)-THC and morphine in the NAc shell and core. Different groups of male Sprague-Dawley rats were administered twice daily for 3 days with increasing doses of Delta(9)-THC (2, 4, and 8 mg/kg i.p.), morphine (10, 20, and 40 mg/kg s.c.), and vehicle. After 14-20 days from the last injection, the animals were implanted with two microdialysis probes, one aimed at the NAc shell and the other at the core. The following day animals pre-treated with Delta(9)-THC and vehicle controls were challenged with 150 microg/kg i.v. of Delta(9)-THC or 0.5 mg/kg i.v. of morphine. Animals pre-treated with morphine and their vehicle controls were administered with 150 microg/kg i.v. of Delta(9)-THC. Rats pre-exposed to Delta(9)-THC showed behavioral sensitization associated with a reduced stimulation of DA transmission in the NAc shell and an increased stimulation in the NAc core in response to Delta(9)-THC challenge. Pre-exposure to Delta(9)-THC induced behavioral sensitization to morphine also, but only a reduced stimulation of DA transmission in the NAc shell was observed. Animals pre-treated with morphine showed behavioral sensitization and differential changes of DA in the NAc shell and core in response to Delta(9)-THC challenge with a decreased response in the shell and an increased response in the core. The results show that Delta(9)-THC-induced behavioral sensitization is associated with changes in the responsiveness of DA transmission in the NAc subdivisions that are similar to those observed in the sensitization induced by other drugs of abuse.  相似文献   

2.
The p53 tumor suppressor protein is involved in regulating a wide variety of stress responses, from senescence and apoptosis to more recently discovered roles in allowing adaptation to metabolic and oxidative stress. After 34 years of research, significant progress has been made in unraveling the complexity of the p53 network, and it is clear that the regulation of p53 protein stability is critical in the control of p53 activity. This article focuses on our current understanding of how the level and activity of p53 is controlled by this seemingly simple mechanism. This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

3.
4.
《Free radical research》2013,47(6):728-734
Abstract

p53 plays a major role in apoptosis through activation of pro-apoptotic gene Bax. It also regulates apurinic/apyrimidinic endonuclease (APE) expression in the base excision repair pathway against oxidative DNA damages. This study investigated whether p53-dependent apoptosis is correlated with APE using an experimental rat model of hydronephrosis. Hydronephrosis was induced by partial ligation of the right ureter. Animals were sacrificed on scheduled time after unilateral ureteral obstruction and the expression of 8-OHdG, γ-H2AX, apoptotic proteins and APE was determined. The accumulated p53 activated Bax and caspase-3 7 days after hydronephrosis induction and the resulting high levels of p53-dependent apoptotic proteins and γ-H2AX tended to decrease APE. The intensities of 8-OHdG and caspase-3 immunolocalization significantly increased in obstructed kidneys than in sham-operated kidneys, although APE immunoreactivity increased after hydronephrosis induction. These results suggest that oxidative DNA damages in obstructed kidneys may trigger p53-dependent apoptosis through repression of APE.  相似文献   

5.
《Cell reports》2023,42(1):111920
  1. Download : Download high-res image (165KB)
  2. Download : Download full-size image
  相似文献   

6.
p53的稳定与活化是细胞应对癌基因激活或DNA损伤等刺激的关键早期事件。可逆的翻译后修饰可严密调控p53的总蛋白质水平和反式激活能力,对维持正常的细胞生长、抑制细胞的早期癌变及肿瘤的发生至关重要。最新研究发现,除了磷酸化、泛素化和乙酰化修饰外,p53还能发生多个位点的甲基化、类泛素化和糖基化等修饰。这些翻译后修饰之间彼此联系,构成一个复杂的调控网络,对p53的稳定及其功能产生深远影响。  相似文献   

7.
New tricks of an old molecule: lifespan regulation by p53   总被引:3,自引:0,他引:3  
Bauer JH  Helfand SL 《Aging cell》2006,5(5):437-440
As guardian of the genome the tumor suppressor p53 controls a crucial point in protection from cellular damage and response to stressors. Activation of p53 can have beneficial (DNA repair) or detrimental (apoptosis) consequences for individual cells. In either case activation of p53 is thought to safeguard the organism at large from the deleterious effects of various stresses. Recent data suggest that the function of p53 might also play a role in the regulation of organismal lifespan. Increased p53 activity leads to lifespan shortening in mice, while apparent reduction of p53 activity in flies leads to lifespan extension. Although the mechanism by which p53 regulates lifespan remains to be determined, these findings highlight the possibility that careful manipulation of p53 activity during adult life may result in beneficial effects on healthy lifespan.  相似文献   

8.
Jin Y  Wei Y  Xiong L  Yang Y  Wu JR 《Cell research》2005,15(5):361-370
Recent studies indicate that cell-cycle checkpoints are tightly correlated with the regulation of apoptosis, in which p53 plays an important role. Our present works show that the expression of E6/E7 oncogenes of human papillomavirus in HeLa cells is inhibited in the presence of anti-tumor reagent tripchlorolide (TC), which results in the up-regulation of p53 in HeLa cells. Interestingly, under the same TC-treatment, the cells at the early S-phase are more susceptible to apoptosis than those at the middle S-phase although p53 protein is stabilized to the same level in both situations. Significant difference is exhibited between the two specified expression profiles. Further analysis demonstrates that anti-apoptotic gene survivin is up-regulated by p53 in the TC-treated middle-S cells, whereas it is down-regulated by p53 in the TC-treated early-S cells. Taken together, the present study indicates that the differential p53-regulated expression of survivin at different stages of the cell cycle results in different cellular outputs under the same apoptosis-inducer.  相似文献   

9.
The role of two estrogen‐mimicking compounds in regulating osteoblast activities were examined. Previously, our attention was focused on benzyl butyl phthalate (BBP) and di‐n‐butyl phthalate (DBP) since previous works showed that they enter the cytoplasm, bioaccumulate, modify actin cytoarchitecture and exert mitogenic effects involving microfilament disruption, and nuclear actin and lamin A regulation in Py1a rat osteoblasts. In this study we showed that BBP and DBP cause DNA base lesions both in MT3T3‐E1 osteoblasts and in mouse primary calvarial osteoblasts (COBs). In addition, treatment with the above effectors caused an increase of p53 and phospho‐p53 (ser‐15 and ser‐20) as well as an increase of apoptotic proteins with consequent decrease of cell viability. Moreover, treatment with phthalates did not modified p53 and phospho‐p53 expression in Py1a rat osteoblasts. It is of relevance that in p53 knockdown mouse osteoblasts a proliferative effect of phthalates, similar to that observed in rat Py1a osteoblasts, was found. In conclusion, our data demonstrated that phthalates induce osteoblast apoptosis, which is, at least in part, mediated by p53 activation, suggesting that the proliferative effects could be due to p53 missing activation or p53 mutation. J. Cell. Biochem. 107: 316–327, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Heat shock proteins (HSPs) play important roles in cellular stress resistance. Previous reports had already suggested that HSP27 played multiple roles in preventing doxorubicin-induced cardiotoxicity. Although HSP25 might have biological functions similar to its human homolog HSP27, the mechanism of HSP25 is still unclear in doxorubicin-induced cardiomyocyte apoptosis. To investigate HSP25 biological function on doxorubicin-induced apoptosis, flow cytometry was employed to analyze cell apoptosis in over-expressing HSP25 H9c2 cells in presence of doxorubicin. Unexpectedly, the H9c2 cells of over-expressing HSP25 have no protective effect on doxorubicin-induced apoptosis. Moreover, no detectable interactions were detected by coimmunoprecipitation between HSP25 and cytochrome c, and HSP25 over-expression failed in preventing cytochrome c release induced by doxorubicin. However, down-regulation of endogenous HSP25 by a specific small hairpin RNA aggravates apoptosis in H9c2 cells. Subsequent studies found that HSP25, but not HSP90, HSP70, and HSP20, interacted with SIRT1. Knockdown of HSP25 decreased the interaction between SIRT1 and p53, leading to increased p53 acetylation on K379, up-regulated pro-apoptotic Bax protein expression, induced cytochrome c release, and triggered caspase-3 and caspase-9 activation. These findings indicated a novel mechanism by which HSP25 regulated p53 acetylation through dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis.  相似文献   

11.
Mutation in the tumor suppressor gene p53 is the most frequent molecular defect in endometrial carcinoma (EC). Recently, CP-31398, a p53-stabilizing compound, has been indicated to possess the ability to alter the expression of non-p53 target genes in addition to p53 downstream genes in tumor cells. Herein, we explore the alternative mechanisms underlying the restoration of EC tumor suppressor function in mutant p53 by CP-31398. A p53-mutated EC cell was constructed in AN3CA cells with restored or partial loss of Slug using lentiviral vectors, followed by treatment with 25 μM CP-31398. A p53-independent mechanism of CP-31398 was confirmed by the interaction between mouse double minute 2 homolog (MDM2) and Slug AN3CA cells treated with IWR-1 (inhibitor of Wnt response 1). Furthermore, the AN3CA cells were treated with short hairpin RNA against Slug, Wnt-specific activators (LiCl) or inhibitors (XAV-939) followed by CP-31398 treatment. Moreover, AN3CA cell proliferation and apoptosis were examined. A tumorigenicity assay was conducted in nude mice. CP-31398 could promote the apoptosis of p53-mutated EC cells, while Slug reversed this effect. Slug ubiquitination was found to occur via binding of Slug to MDM2 in AN3CA cells. We found that CP-31398 increased the GSK-3ß, p-Slug, Puma, Wtp53, and Bax expressions whereas Wnt, Mtp-53, Slug, Bcl-2, and Ki-67 expressions were decreased. However, these findings were reversed following the activation of the Wnt pathway and overexpression of Slug. Finally, the in vivo experimental evidence confirmed that CP-31398 with depleted Slug suppressed tumor growth by downregulating the Slug. Collectively, CP-31398-regulated Slug downregulation represses the p53-mutated EC via the p53/Wnt/Puma pathway.  相似文献   

12.
13.
A role for p53 in base excision repair   总被引:22,自引:0,他引:22  
Wild-type p53 protein can markedly stimulate base excision repair (BER) in vitro, either reconstituted with purified components or in extracts of cells. In contrast, p53 with missense mutations either at hot-spots in the core domain or within the N-terminal transactivation domain is defective in this function. Stimulation of BER by p53 is correlated with its ability to interact directly both with the AP endonuclease (APE) and with DNA polymerase beta (pol beta). Furthermore, p53 stabilizes the interaction between DNA pol beta and abasic DNA. Evidence that this function of p53 is physiologically relevant is supported by the facts that BER activity in human and murine cell extracts closely parallels their levels of endogenous p53, and that BER activity is much reduced in cell extracts immunodepleted of p53. These data suggest a novel role for p53 in DNA repair, which could contribute to its function as a key tumor suppressor.  相似文献   

14.
15.
16.
p53 has a central role in skin pigmentation and may impact on melanoma at all stages, however, as it's mutation frequency in melanoma is low, it's role has been somewhat under-appreciated. During normal skin function, p53 in the keratinocyte is a transducer of the skin tanning signal and an essential component of what is effectively a keratinocyte-melanocyte signaling cycle that regulates skin pigmentation. It is clear that this cycle functions optimally in skin of dark pigmentation. When melanin biosynthesis is genetically disrupted in skin of white complexion, we propose that this cycle operates as a promoter of melanocyte proliferation. The cell autonomous function of p53 in melanocytes is not well described, however, the balance of the evidence suggests that p53 is an effective tumor suppressor and the myriad of mechanisms by which the p53 pathway may be dysregulated in tumors attests to it importance as a tumor suppressor. In this review, we outline the known mechanisms that impair p53 itself and its immediate regulators or target genes during melanomagenesis. Due to the importance of this pathway, it is clear that p53 disruptions may relate directly to a patient's prognosis. This pathway will continue to be a focus of investigation, particularly with respect to targeted experimental chemotherapeutics.  相似文献   

17.
18.
张云  刘泽军 《生命科学》2004,16(2):79-80,100
p53是一个肿瘤抑制蛋白,它是通过调节相关基因表达,诱导细胞凋亡。p53诱导细胞凋亡的机制多年来一直不太清楚,而最近发现的ASPP(apoptosis stimulating protein of p53)蛋白家族对p53诱导细胞凋亡的机制研究有了新的进展。本文就此作一综述。  相似文献   

19.
20.
It was shown previously that the p53 protein can recognize DNA modified with antitumor agent cisplatin (cisPt-DNA). Here, we studied p53 binding to the cisPt-DNA using p53 deletion mutants and via modulation of the p53-DNA binding by changes of the protein redox state. Isolated p53 C-terminal domain (CTD) bound to the cisPt-DNA with a significantly higher affinity than to the unmodified DNA. On the other hand, p53 constructs involving the core domain but lacking the C-terminal DNA binding site (CTDBS) exhibited only small binding preference for the cisPt-DNA. Oxidation of cysteine residues within the CD of posttranslationally unmodified full length p53 did not affect its ability to recognize cisPt-DNA. Blocking of the p53 CTDBS by a monoclonal antibody Bp53-10.1 resulted in abolishment of the isolated CTD binding to the cisPt-DNA. Our results demonstrate a crucial role of the basic region of the p53 CTD (aa 363-382) in the cisPt-DNA recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号