首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L L Ilag  D Jahn 《Biochemistry》1992,31(31):7143-7151
Glutamate 1-semialdehyde aminotransferase (glutamate 1-semialdehyde 2,1-aminomutase; EC 5.4.3.8; GSA-AT) catalyzes the transfer of the amino group on carbon 2 of glutamate 1-semialdehyde (GSA) to the neighboring carbon 1 to form delta-aminolevulinic acid (ALA). To gain insight into the mechanism of this enzyme, possible intermediates were tested with purified enzyme and the reaction sequence was followed spectroscopically. While 4,5-dioxovaleric acid (DOVA) was efficiently converted to ALA by the pyridoxamine 5'-phosphate (PMP) form of the enzyme, 4,5-diaminovaleric acid (DAVA) was a substrate for the pyridoxal 5'-phosphate (PLP) form of GSA-AT. Thus, both substances are reaction intermediates. The purified enzyme showed an absorption spectrum with a peak around 338 nm. Addition of PLP led to increased absorption at 338 nm and a new peak around 438 nm. Incubation of the purified enzyme with PMP resulted in an additional absorption peak at 350 nm. The reaction of the PLP and PMP form of the enzyme with GSA allowed the detection of a series of peaks which varied in their intensities in a time-dependent manner. The most drastic changes to the spectrum that were observed during the reaction sequence were at 495 and 540 nm. Some of the detected absorption bands during GSA-AT catalysis were previously described for several other aminotransferases, indicating the relationship of the mechanisms. The reaction of the PMP form of the enzyme with DOVA resulted in a similar spectrum as described above, while the spectrum for the conversion of DAVA by the PLP form of the enzyme indicated a different mechanism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of environment on the growth of Verticillium lecanii and its metabolic transformation of racemic ibuprofen are reported. The growth of V. lecanii exhibited a lag phase of up to 12 h followed by a period of rapid growth for up to 4 d. The optimal conditions for growth of the micro-organism were determined to be 24°C at pH 7.0 with a culture volume of up to one-tenth of the culture flask volume.
The metabolic oxidation of (R,S)-ibuprofen occurred in both growing cultures and washed cell suspensions of V. lecanii. Examination of the stereochemical composition of the remaining substrate indicated that under both conditions the oxidation was substrate stereoselective for the R-enantiomer of the drug. Using growing cultures of the micro-organism, quantitative conversion of the substrate to the metabolite was achieved following incubation for 14 d. Examination of the enantiomeric composition of the metabolic product indicated an excess of the S-isomer (ratio S/R = 2.1). The possible mechanisms for the apparent anomaly in the stereoselectivity of (R,S)-ibuprofen metabolism and the enantiomeric composition of the metabolite are discussed.  相似文献   

3.
Glutamate-1-semialdehyde aminomutase (GSAM), a key enzyme in tetrapyrrole cofactor biosynthesis, performs a unique transamination on a single substrate. The substrate, glutamate-1-semialdehyde (GSA), undergoes a reaction that exchanges the position of an amine and a carbonyl group to produce 5-aminolevulinic acid (ALA). This transamination reaction is unique in the fact that is does not require an external cofactor to act as a nitrogen donor or acceptor in this transamination reaction. One of the other remarkable features of the catalytic mechanism is the release free in the enzyme active site of the intermediate 4,5-diaminovaleric acid (DAVA). The action of a gating loop prevents the escape of DAVA from the active site. In a MD simulation approach, using snapshots provided by X-ray crystallography and protein crystal absorption spectrometry data, the individual catalytic steps in this unique intramolecular transamination have been elucidated.  相似文献   

4.
The immediate precursor in the synthesis of tetrapyrroles is Δ-aminolevulinate (ALA). ALA is synthesized from glutamate in higher plants, algae, and certain bacteria. Glutamate 1-semialdehyde aminotransferase (EC 5.4.3.8) (GSA-AT), the third enzyme involved in this metabolic pathway, catalyzes the transamination of GSA to form ALA. The gene encoding this aminotransferase has previously been isolated from barley (Hordeum vulgare) and inserted into an Escherichia coli expression vector. We describe herein the purification of this recombinant barley GSA-AT expressed in Escherichia coli. Coexpression of GroEL and GroES is required for isolation of active aminotransferase from the soluble protein fraction of Escherichia coli. Purified GSA-AT exhibits absorption maxima characteristic of vitamin B6-containing enzymes. GSA-AT is primarily in the pyridoxamine form when isolated and can be interconverted between this and the pyridoxal form by addition of 4,5-dioxovalerate and 4,5-diaminovalerate. The conversion of GSA to ALA under steady-state conditions exhibited typical Michaelis-Menten kinetics. Values for Km (d,l-GSA) and kcat were determined to be 25 micromolar and 0.11 per second, respectively, by nonlinear regression analysis. Stimulation of ALA synthesis by increasing concentrations of d,l-GSA at various fixed concentrations of 4,5-diaminovalerate supports the hypothesis that 4,5-diaminovalerate is the intermediate in the synthesis of ALA.  相似文献   

5.
Soluble epoxide hydrolase (EH) from the potato Solanum tuberosum and an evolved EH of the bacterium Agrobacterium radiobacter AD1, EchA-I219F, were purified for the enantioconvergent hydrolysis of racemic styrene oxide into the single product (R)-1-phenyl-1,2-ethanediol, which is an important intermediate for pharmaceuticals. EchA-I219F has enhanced enantioselectivity (enantiomeric ratio of 91 based on products) for converting (R)-styrene oxide to (R)-1-phenyl-1,2-ethanediol (2.0 +/- 0.2 micromol/min/mg), and the potato EH converts (S)-styrene oxide primarily to the same enantiomer, (R)-1-phenyl-1,2-ethanediol (22 +/- 1 micromol/min/mg), with an enantiomeric ratio of 40 +/- 17 (based on substrates). By mixing these two purified enzymes, inexpensive racemic styrene oxide (5 mM) was converted at 100% yield to 98% enantiomeric excess (R)-1-phenyl-1,2-ethanediol at 4.7 +/- 0.7 micromol/min/mg. Hence, at least 99% of substrate is converted into a single stereospecific product at a rapid rate.  相似文献   

6.
δ-Aminolevulinic acid (ALA) synthase was partially purified from liver cytosol fraction of rats treated with allylisopropylacetamide (AIA). The cytosol ALA synthase showed an apparent molecular weight of 320,000. The cytosol ALA synthase of this size dissociates into at least three protein components when subjected to sucrose density gradient centrifugation in the presence of 0.25 m NaCl: one is the catalytically active protein with an s value of about 6.4 or a molecular weight of 110,000, and the other two are catalytically inactive binding proteins showing s values of about 4 and 8, respectively. Recombination of the 6.4 S protein and the 4 S protein yielded a protein complex with an apparent molecular weight of 170,000 and recombination of all three protein components resulted in formation of the original cytosol ALA synthase. The cytosol ALA synthase also loses its binding proteins when treated with various proteases; thus, the enzyme-active protein obtained after papain digestion was very similar, if not identical, to mitochondrial ALA synthase. When treated with trypsin, however, the cytosol ALA synthase was converted to an enzyme showing an apparent molecular weight of 170,000, which probably represents the complex of the mitochondria-type enzyme and the 4 S binding protein. The cytosol ALA synthase tends to aggregate to form a dimer with an apparent molecular weight of 650,000–700,000. The aggregated form of the cytosol ALA synthase was less susceptible to trypsin digestion. Hemin strongly stimulated dimer formation of the cytosol ALA synthase and the aggregate produced by contact with hemin was very tight and did not easily dissociate into its respective protein components by sucrose gradient centrifugation or even after treatment with trypsin. The possible mechanisms of the conversion of cytosol ALA synthase to the mitochondrial enzyme and also of the inhibition by hemin of the intracellular translocation of ALA synthase are discussed.  相似文献   

7.
从土壤中筛选出一株能拆分(R,S)-环氧丙醇丁酸酯的根霉(Rhizopussp.Bc0-09),该菌株所产胞外脂肪酶在水解环氧丙醇丁酸酯的反应中具有良好的立体专一性。在pH恒定7.0的条件下,以其发酵液水解底物,当转化率为58%时,残留的(R)-环氧丙醇丁酸酯的光学纯度(对映体过量值)达96.1%。  相似文献   

8.
A putative epoxide hydrolase-encoding gene was identified from the genome sequence of Cupriavidus metallidurans CH34. The gene was cloned and overexpressed in Escherichia coli with His(6)-tag at its N-terminus. The epoxide hydrolase (CMEH) was purified to near homogeneity and was found to be a homodimer, with subunit molecular weight of 36 kDa. The CMEH had broad substrate specificity as it could hydrolyze 13 epoxides, out of 15 substrates tested. CMEH had high specific activity with 1,2-epoxyoctane, 1,2-epoxyhexane, styrene oxide (SO) and was also found to be active with meso-epoxides. The enzyme had optimum pH and temperature of 7.5 and 37°C respectively, with racemic SO. Biotransformation of 80 mM SO with recombinant whole E. coli cells expressing CMEH led to 56% ee(P) of (R)-diol with 77.23% conversion in 30 min. The enzyme could hydrolyze (R)-SO, ~2-fold faster than (S)-SO, though it accepted both (R)- and (S)-SO with similar affinity as K(m)(R) and K(m)(S) of CMEH were 2.05±0.42 and 2.11±0.16 mM, respectively. However, the k(cat)(R) and k(cat)(S) for the two enantiomers of SO were 4.80 and 3.34 s(-1), respectively. The wide substrate spectrum exhibited by CMEH combined with the fast conversion rate makes it a robust biocatalyst for industrial use. Regioselectivity studies with enantiopure (R)- and (S)-SO revealed that with slightly altered regioselectivity, CMEH has a high potential to synthesize an enantiopure (R)-PED, through an enantioconvergent hydrolytic process.  相似文献   

9.
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a metabolite of arachidonic acid shown to possess important biological activities within different cell types. In the neutrophil, a specific NADP(+)-dependent dehydrogenase utilizes 5-lipoxygenase-derived 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5(S)-HETE) as the required substrate. In the present study, 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HpETE), rather than 5-HETE, was found to be the biosynthetic precursor of 5-oxo-ETE in the murine macrophage. The macrophage was not able to convert 5-HETE into 5-oxo-ETE even when preincubated with phorbol ester or with other lipid hydroperoxides. The factor responsible for the conversion of 5-HpETE into 5-oxo-ETE was found predominantly in the cytosolic fraction of the macrophage, with an approximate molecular weight of 50,000-60,000, as assessed by size exclusion chromatography. Formation of 5-oxo-ETE was rapid and the catalytic protein was found to have an apparent K(m) of 5.3 microM for the eicosanoid. Furthermore, the protein could efficiently utilize 5(R,S)-HpETE as substrate and was heat and protease labile. This novel pathway of 5-oxo-ETE biosynthesis in the murine macrophage was consistent with reduction of a 5-hydroperoxy group to an intermediate alkoxy radical that could be subsequently oxidized to the 5-oxo product. Such a mechanism would enable racemic 5-HpETE, derived from free radical oxidation of arachidonic acid, to be efficiently converted into this potent chemotactic eicosanoid.  相似文献   

10.
(R)-3-Amino-3-phenylpropionic acid ((R)-beta-Phe) and (S)-3-amino-3-phenylpropionic acid ((S)-beta-Phe) are key compounds on account of their use as intermediates in synthesizing pharmaceuticals. Enantiomerically pure non-natural amino acids are generally prepared by enzymatic resolution of the racemic N-acetyl form, but despite the intense efforts this method could not be used for preparing enantiomerically pure beta-Phe, because the effective enzyme had not been found. Therefore, screening for microorganisms capable of amidohydrolyzing (R,S)-N-acetyl-3-amino-3-phenylpropionic acid ((R,S)-N-Ac-beta-Phe) in an enantiomer-specific manner was performed. A microorganism having (R)-enantiomer-specific amidohydrolyzing activity and another having both (R)-enantiomer- and (S)-enantiomer-specific amidohydrolyzing activities were obtained from soil samples. Using 16S rDNA analysis, the former organism was identified as Variovorax sp., and the latter as Burkholderia sp. Using these organisms, enantiomerically pure (R)-beta-Phe (>99.5% ee) and (S)-beta-Phe (>99.5% ee) with a high molar conversion yield (67%-96%) were obtained from the racemic substrate.  相似文献   

11.
Mau YH  Wang WY 《Plant physiology》1988,86(3):793-797
The first committed intermediate of chlorophyll biosynthesis, δ-aminolevulinic acid (ALA), is synthesized from glutamate in the plant cell. The last step of ALA synthesis is a transamination reaction which converts glutamate-1-semialdehyde (GSA) to ALA. The mechanism of the transamination was examined by using glutamate, specifically labeled with either 1-13C or 15N, as substrate for ALA synthesis. After incubating with crude enzymes extracted from Chlamydomonas reinhardtii, the distribution of labels in purified ALA molecules was examined by nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. We found that both isotopes were present in the same ALA molecule. We interpret the results to mean that intermolecular transamination occurs during the conversion of GSA to ALA.  相似文献   

12.
高对映选择性环氧化物水解酶产生菌的筛选及特性研究   总被引:6,自引:0,他引:6  
从土壤中分离的芽孢杆菌Bacillus megaterium ECU1001所产五氧化物水解酶能高对映选择性水解缩水甘油苯基醚(对映选择率E值可达47.8),当转化率为55.9%时,剩余的(S)-缩水甘油苯基醚的光学纯度(对映体过量值,ee)可达99.5%;当底物浓度提高到60mmol/L时,光学纯(S)-缩水基油苯基醚的收率达到25.6%。  相似文献   

13.
Alpha-lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) are powerful antioxidants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. The mechanism of anti-inflammatory activity of ALA and DHALA is not known. The present study describes the interaction of ALA and DHALA with pro-inflammatory secretory PLA(2) enzymes from inflammatory fluids and snake venoms. In vitro enzymatic inhibition of sPLA(2) from Vipera russellii, Naja naja and partially purified sPLA(2) enzymes from human ascitic fluid (HAF), human pleural fluid (HPF) and normal human serum (HS) by ALA and DHLA was studied using (14)C-oleate labeled Escherichia coli as the substrate. Biophysical interaction of ALA with sPLA(2) was studied by fluorescent spectral analysis and circular dichroism studies. In vivo anti-inflammatory activity was checked using sPLA(2) induced mouse paw edema model. ALA but not DHLA inhibited purified sPLA(2) enzymes from V. russellii, N. naja and partially purified HAF, HPF and HS in a dose dependent manner. This data indicated that ALA is critical for inhibition. IC(50) value calculated for these enzymes ranges from 0.75 to 3.0 microM. The inhibition is independent of calcium and substrate concentration. Inflammatory sPLA(2) enzymes are more sensitive to inhibition by ALA than snake venom sPLA(2) enzymes. ALA quenched the fluorescence intensity of sPLA(2) enzyme in a dose dependent manner. Apparent shift in the far UV-CD spectra of sPLA(2) with ALA indicated change in its alpha-helical confirmation and these results suggest its direct interaction with the enzyme. ALA inhibits the sPLA(2) induced mouse paw edema in a dose dependent manner and confirms the sPLA(2) inhibitory activity in vivo also. These data suggest that ALA may act as an endogenous regulator of sPLA(2) enzyme activity and suppress inflammatory reactions.  相似文献   

14.
Purification and characterization of chalcone isomerase from soybeans   总被引:5,自引:0,他引:5  
Chalcone isomerase from soybean has been purified 11,000-fold over the crude extract. The purification procedure features pseudo-affinity chromatography on an Amicon Matrex Orange A column with selective elution by a product of the enzymatic reaction. The purified enzyme is greater than 99.5% pure and possesses a specificity activity of 340 IU/mg, which is 520-fold greater than previously reported. The apparent molecular weight of the chalcone isomerase is 24,000 as determined from sodium dodecyl sulfate-polyacrylamide gels and from size exclusion chromatography under native conditions on Sephacryl S-200. The enzyme exists as a monomer that migrates on isoelectric focusing gels with a pI of 5.7. Amino acid analysis indicates that almost 50% of the residues are hydrophobic and yields a partial specific volume of 0.750 ml/g. Chalcone isomerase contains no carbohydrate moieties and has a blocked N terminus. The purified enzyme catalyzes the conversion of 2', 4',4-trihydroxychalcone (I) to (2S)-4',7-dihydroxyflavanone (II) at pH 7.6 with a second order rate constant, kcat/Km, of 1.1 X 10(9) M-1 min-1 and an apparent equilibrium constant, [II]/[I], of 7.6. The rate constant for the conversion of enzyme-bound substrate to the (2S)-flavanone, kcat = 11,000 min-1, exceeds the spontaneous conversion by 36 million-fold. The enzyme catalyzes the formation of (2S)-flavanone over 100,000-fold faster than to the (2R)-flavanone, indicating that the enzyme is highly stereoselective, yielding over 99.999% of the (2S)-flavanone.  相似文献   

15.
N-Methyltryptophan oxidase (MTOX), a flavoenzyme from Escherichia coli, catalyzes the oxidative demethylation of N-methyl-L-tryptophan (k(cat) = 4600 min(-1)). Other secondary amino acids (e.g., sarcosine) are oxidized at a slower rate. We have identified carbinolamines as a new class of alternate substrate. MTOX oxidation of the carbinolamine formed with L-tryptophan and formaldehyde yields N-formyl-L-tryptophan in a relatively slow reaction that does not compete with turnover of MTOX with N-methyl-L-tryptophan. Double reciprocal plots with N-methyl-L-tryptophan as the varied substrate are nearly parallel, but the slopes show a small, systematic variation depending on the oxygen concentration. N-Benzylglycine, a dead-end competitive inhibitor with respect to N-methyl-L-tryptophan, acts as a noncompetitive inhibitor with respect to oxygen. The results are consistent with a modified ping pong mechanism where oxygen binds to the reduced enzyme prior to dissociation of the imino acid product. MTOX is converted to a 2-electron reduced form upon anaerobic reaction with N-methyl-L-tryptophan, sarcosine, or the carbinolamine formed with L-tryptophan and formaldehyde. No evidence for a detectable intermediate was obtained by monitoring the spectral course of the latter two reactions. MTOX reduction with thioglycolate does, however, proceed via a readily detectable anionic, flavin radical intermediate. The reductive half-reaction with sarcosine at 4 degrees C exhibits saturation kinetics (k(lim) = 6.8 min(-1), K = 39 mM) and other features consistent with a mechanism in which a nearly irreversible reduction step (E(ox).S --> E(red).P) (k(lim)) is preceded by a rapidly attained equilibrium (K) between free E and the E.S complex. The 21 degrees C temperature difference can reasonably account for the 3.6-fold lower value obtained for k(lim) as compared with turnover at 25 degrees C (k(cat) = 24.5 min(-1)), suggesting that sarcosine is oxidized at a kinetically significant rate under anaerobic conditions and the reductive half-reaction is rate-limiting during turnover. These conclusions are, however, difficult to reconcile with steady-state kinetic patterns obtained with sarcosine that are consistent with a rapid equilibrium ordered mechanism with oxygen as the first substrate. The basis for the apparent stability of the MTOX.oxygen complex (K(d) = 72 microM) is unknown.  相似文献   

16.
We have proposed that glutamine serves in a facilitated diffusion process, mediated by the enzyme gamma-glutamyl transferase (gamma-glutamyl transpeptidase; gamma GT) and that it leaves the brain in exchange for entering amino acids. Glutamine is also a precursor of gamma-aminobutyric acid (GABA). Thus, providing an alternate substrate for gamma GT should spare brain glutamine, raise GABA, and cause an anticonvulsant effect. We have found that glycylglycine, the best-known substrate for gamma GT, and delta-aminovaleric acid (DAVA), a structural analog, have anticonvulsant activity in DBA/2J mice. Both compounds can decrease the incidence and severity of seizures induced by L-methionine-RS-sulfoximine or electroconvulsive shock. DAVA was also tested and found to be active against seizures caused by pentylenetetrazol or picrotoxin. [14C]DAVA entered the brain at the rate of 18.7 nmol/g/min. The activity of DAVA as a substrate of gamma GT was intermediate to that of glycylglycine and glutamine. Preliminary studies have shown that brain glutamine and perhaps GABA are elevated 3 h after administration of DAVA (7.5 mmol/kg). These findings support the theory that glutamine exchange plays a role in amino acid transport across the blood-brain barrier and suggests a new concept in anticonvulsant therapy.  相似文献   

17.
The intraplastidic localization of the enzymes that catalyze the conversion of δ-aminolevulinic acid (ALA) to protoporphyrin IX (Proto) is a controversial issue. While some researchers assign a stromal location for these enzymes, others favor a membranebound one. Etiochloroplasts were isolated from etiolated cucumber cotyledons (Cucumis sativus, L.) by differential centrifugation and were purified further by Percoll density gradient centrifugation. Purified plastids were highly intact, and contamination by other subcellular organelles was reduced five- to ninefold in comparison to crude plastid preparations. Most of the ALA to Proto conversion activity was found in the plastids. On a unit protein basis, the ALA to Proto conversion activity of isolated mitochondria was about 2% that of the purified plastids, and could be accounted for by contamination of the mitochondrial preparation by plastids. Lysis of the purified plastids by osmotic shock followed by high speed centrifugation, yielded two subplastidic fractions: a soluble clear stromal fraction and a pelleted yellowish one. The stromal fraction contained about 11% of the plastidic ALA to Proto conversion activity while the membrane fraction contained the remaining 89%. The stromal ALA to Proto conversion activity was in the range of stroma contamination by subplastidic membrane material. Complete solubilization of the ALA to Proto activity was achieved by high speed shearing and cavitation, in the absence of detergents. Solubilization of the ALA to Proto conversion activity was accompanied by release of about 30% of the membrane-bound protochlorophyllide. It is proposed that the enzymes that convert ALA to Proto are loosely associated with the plastid membranes and may be solubilized without the use of detergents. It is not clear at this stage whether the enzymes are associated with the outer or inner plastid membranes and whether they form a multienzyme complex or not.  相似文献   

18.
Mammalian xanthine dehydrogenase can be converted to xanthine oxidase by modification of cysteine residues or by proteolysis of the enzyme polypeptide chain. Here we present evidence that the Cys(535) and Cys(992) residues of rat liver enzyme are indeed involved in the rapid conversion from the dehydrogenase to the oxidase. The purified mutants C535A and/or C992R were significantly resistant to conversion by incubation with 4,4'-dithiodipyridine, whereas the recombinant wild-type enzyme converted readily to the oxidase type, indicating that these residues are responsible for the rapid conversion. The C535A/C992R mutant, however, converted very slowly during prolonged incubation with 4,4'-dithiodipyridine, and this slow conversion was blocked by the addition of NADH, suggesting that another cysteine couple located near the NAD(+) binding site is responsible for the slower conversion. On the other hand, the C535A/C992R/C1316S and C535A/C992R/C1324S mutants were completely resistant to conversion, even on prolonged incubation with 4,4'-dithiodipyridine, indicating that Cys(1316) and Cys(1324) are responsible for the slow conversion. The crystal structure of the C535A/C992R/C1324S mutant was determined in its demolybdo form, confirming its dehydrogenase conformation.  相似文献   

19.
Adrenodoxin, purified from bovine adrenal cortex, was subjected to trypsin cleavage to yield a trypsin-resistant form, designated TT-adrenodoxin. Sequencing with carboxypeptidase Y identified the trypsin cleavage site as Arg-115, while Edman degradation indicated no NH2-terminal cleavage. Native adrenodoxin and TT-adrenodoxin exhibited similar affinity for adrenodoxin reductase as determined in cytochrome c reductase assays. In side chain cleavage assays using cytochrome P-450scc, however, TT-adrenodoxin demonstrated greater activity than adrenodoxin with cholesterol, (22R)-22-hydroxycholesterol, or (20R,22R)-20,22-dihydroxycholesterol as substrate. This enhanced activity is due to increased affinity of TT-adrenodoxin for cytochrome P-450scc; TT-adrenodoxin exhibits a 3.8-fold lower apparent Km for the conversion of cholesterol to pregnenolone. TT-Adrenodoxin was also more effective in coupling with cytochrome P-450(11) beta, exhibiting a 3.5-fold lower apparent Km for the 11 beta-hydroxylation of deoxycorticosterone. In the presence of partially saturating cholesterol, TT-adrenodoxin elicited a type I spectral shift with cytochrome P-450scc similar to that induced by adrenodoxin, and spectral titrations showed that oxidized TT-adrenodoxin exhibited a 1.5-fold higher affinity for cytochrome P-450scc. These results establish that COOH-terminal residues 116-128 are not essential for the electron transfer activity of bovine adrenodoxin, and the differential effects of truncation at Arg-115 on interactions with adrenodoxin reductase and cytochromes P-450 suggest that the residues involved in the interactions are not identical.  相似文献   

20.
From Streptomyces virginiae, in which production of streptogramin antibiotic virginiamycin M(1) and S is tightly regulated by a low-molecular-weight Streptomyces hormone called virginiae butanolide (VB), which is a member of the gamma-butyrolactone autoregulators, the hormone biosynthetic gene (barS1) was cloned and characterized by heterologous expression in Escherichia coli and by gene disruption in S. virginiae. The barS1 gene (a 774-bp open reading frame encoding a 257-amino-acid protein [M(r), 27,095]) is situated in the 10-kb regulator island surrounding the VB-specific receptor gene, barA. The deduced BarS1 protein is weakly homologous to beta-ketoacyl-acyl carrier protein/coenzyme A reductase and belongs to the superfamily of short-chain alcohol dehydrogenase. The function of the BarS1 protein in VB biosynthesis was confirmed by BarS1-dependent in vitro conversion of 6-dehydro-VB-A to VB-A, the last catalytic step in VB biosynthesis. Of the four possible enantiomeric products from racemic 6-dehydro-VB-A as a substrate, only the natural enantiomer of (2R,3R,6S)-VB-A was produced by the purified recombinant BarS1 (rBarS1), indicating that rBarS1 is the stereospecific reductase recognizing (3R)-isomer as a substrate and reducing it stereospecifically to the (6S) product. In the DeltabarS1 mutant created by homologous recombination, the production of VB as well as the production of virginiamycin was lost. The production of virginiamycin by the DeltabarS1 mutant was fully recovered by the external addition of VB to the culture, which indicates that the barS1 gene is essential in the biosynthesis of the autoregulator VBs in S. virginiae and that the failure of virginiamycin production was a result of the loss of VB production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号