首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Huang JI  Beanes SR  Zhu M  Lorenz HP  Hedrick MH  Benhaim P 《Plastic and reconstructive surgery》2002,109(3):1033-41; discussion 1042-3
Human liposuction aspirates contain pluripotent adipose-derived mesodermal stem cells that have previously been shown to differentiate into various mesodermal cell types, including osteoblasts and chondrocytes. To develop an autologous research model of bone and cartilage tissue engineering, the authors sought to determine whether rat inguinal fat pads contain a similar population of osteochondrogenic precursor cells. It was hypothesized that the rat inguinal fat pad contains adipose-derived multipotential cells that resemble human adipose-derived mesodermal stem cells in their osteochondrogenic capacity. To test this, the authors assessed the ability of cells isolated from the rat inguinal fat pad to differentiate into osteoblasts and chondrocytes by a variety of lineage-specific histologic stains.Rat inguinal fat pads were isolated and processed from Sprague-Dawley rats into a fibroblast-like cell population. Cell cultures were placed in pro-osteogenic media containing dexamethasone, ascorbic acid, and beta-glycerol phosphate. Osteogenic differentiation was assessed at 2, 4, and 6 weeks. Alkaline phosphatase activity and von Kossa staining were performed to assess osteoblastic differentiation and the production of a calcified extracellular matrix. Cell cultures were also placed in prochondrogenic conditions and media supplemented with transforming growth factor-beta1, insulin, transferrin, and ascorbic acid. Chondrogenic differentiation was assessed at 2, 7, and 14 days by the presence of positive Alcian blue staining and type II collagen immunohistochemistry. Cells placed in osteogenic conditions changed in structure to a more cuboidal shape, formed bone nodules, stained positively for alkaline phosphatase activity, and secreted calcified extracellular matrix by 2 weeks. Cells placed in chondrogenic conditions formed cartilaginous nodules within 48 hours that stained positively for Alcian blue and type II collagen. The authors identified the rat inguinal fat pad as a source of osteochondrogenic precursors and developed a straightforward technique to isolate osteochondrogenic precursors from a small animal source. This relatively easily obtained source of osteochondrogenic cells from the rat may be useful for study of tissue engineering strategies and the basic science of stem cell biology.  相似文献   

2.
1. A defined medium supporting the proliferation and differentiation of adipocyte precursors isolated from inguinal fat pads of 8-12-day-old mice was developed. 2. It consists of a 1:1 mixture of DME and WAJC404A media supplemented with insulin (10 micrograms/ml), transferrin (10 micrograms/ml), fibroblast growth factor (10 ng/ml) and high density lipoproteins (HDL) (90 micrograms protein/ml). 3. DME-F12 medium (1:1 mixture) used as a nutrient mixture in the defined medium of rat and human adipocyte precursors was inadequate for cultivating mouse adipocyte precursors. 4. HDL had a definite beneficial effect on both preadipocyte growth and differentiation. 5. Differentiation was enhanced by addition of dexamethasone (10(-9) M) but could be almost completely inhibited by transforming growth factor beta 1 (TGF-beta 1). 6. TGF-beta 1 was shown to be effective only when present in the early stages of differentiation.  相似文献   

3.
Complete differentiation of adipocyte precursors   总被引:9,自引:0,他引:9  
Summary Evidence for the complete morphological maturation of precursor cells into adipocytes in vitro is presented. Cells were isolated from the stromal fraction of adipose tissue from adult humans and from rats and were grown in culture. Abdominal skin fibroblasts were used as controls. All cell strains were initially fusiform and replicated. On reaching monolayer confluency, they were transferred to an enriched growth medium in which the human and rat adipocyte precursors differentiated into a homogeneous population of cells, morphologically indistinguishable from mature adipocytes. In contrast, skin fibroblasts from the same person or animal, and grown under identical culture conditions, did not accumulate lipid and retained their fusiform contour. The same results were obtained in the first six subcultures that were studied. Thus, there is firm evidence that fat tissue of adult humans and rats contains adipocyte precursors that differentiate into mature fat cells. The culture system that has been described will facilitate the elucidation of the factors involved in replication and differentiation of adipocyte precursors.This work was supported by The Medical Research Council of Canada Grant MA-5827, The Ontario Heart Foundation, The Atkinson Charitable Foundation, The Banting Research Foundation, The J.P. Bickell Foundation, and the Physicians' Services Incorporated Foundation  相似文献   

4.
Transforming growth factor beta 1 (TGF-beta 1) binding and action were investigated during differentiation of adipocyte precursors freshly isolated from rat inguinal fat-pad cultivated in defined medium. The data presented in this paper indicate that TGF-beta 1 inhibits differentiation of adipocyte precursors with a 50% effective dose of 9 pM. Time course experiments demonstrate that TGF-beta 1 is active only when it is added to the cells while they are still undifferentiated. If added after the cells have started to differentiate, TGF-beta 1 is less active or becomes inactive. 125I-TGF-beta 1 binding studies on adipocyte precursors before and after differentiation indicate a 10-fold decrease in the number of TGF-beta 1 binding sites after the cells have differentiated. Blocking of the differentiation process by treating the cells with fetal bovine serum or with prostaglandin F2 alpha prevented the decrease in the number of TGF-beta 1 receptors, thereby demonstrating that this change in binding was specifically linked to the differentiation process. Experiments cross-linking 125I-TGF-beta 1 to adipocyte precursors showed that 125I-TGF-beta 1 is specifically cross-linked to two bands with molecular weights of 92,000 and 70,000. After differentiation, a decrease in the intensity of the cross-linked bands was observed. These results demonstrate that loss of cell surface TGF-beta 1 binding sites follows differentiation of adipocyte precursors.  相似文献   

5.
I mouse strain displays adipocyte hypoplasia responsible for smaller fat pad size compared with C57BL mice. We investigated possible alterations in the proliferation and/or differentiation capacity of preadipocytes from the stroma-vascular fraction of adipose tissue in the I mouse strain. Control C57BL and I mice were studied at 8 weeks of age, and both adipose and stromal cells were isolated from epididymal and inguinal adipose tissue localizations. Results showed that the lower epididymal adipose mass in I mice was accompanied by a decrease in stromal cell number compared with C57BL mice. In inguinal fat pads, total cell number in the stroma-vascular fraction was unmodified; lipoprotein lipase activity significantly increased in stromal cells from I mice compared with control mice. In this depot, further characterization of cells from the stroma-vascular fraction by separation of cells according to density showed an increased number of preadipocytes in the I mouse whole stromal cell population. These preadipocytes seemed unable to undergo terminal maturation, thus leading to a decrease in the number of mature adipocytes. These results indicated that resistance to fat accumulation in I mice is characterized by site-dependent impairment of both the proliferative rate and the differentiation capacity of adipocyte precursors.  相似文献   

6.
We isolated from normal rat adipose tissue, by a Percoll-density-gradient procedure, two populations of adipocyte precursors. These preadipocytes undergo morphological and biochemical adipose conversion in primary culture. For full adipose conversion, these precursor cells, in addition to the adipogenic factor present in fetal-calf serum, require other effectors differentially. One population completes terminal differentiation in the presence of physiological concentrations of insulin. The second population requires a pre-sensitization with isobutylmethylxanthine at a critical period of the culture in order to respond to insulin. The fact that dibutyryl cyclic AMP could not be substituted for isobutylmethylxanthine suggests that the effect of the latter agent is not through its inhibition of particulate phosphodiesterase activity. These two populations further differ in their response to exogenously added haemin. Thus the existence of at least two developmentally regulated rat adipose-precursor compartments is demonstrated.  相似文献   

7.
Triacylglycerol breakdown (lipolysis) results from a series of reactions culminated by activation of "hormone-stimulated" triacylglycerol lipase, an enzyme unique to adipose tissue. We have studied various components of the lipolytic process in human omental adipocyte precursors differentiating in culture. The levels of cyclic AMP, the "second messenger" of lipolytic hormones, were about sixfold higher in fat cell precursors than those in abdominal skin fibroblasts. L-Isoproterenol resulted in significant elevation of cyclic AMP levels in both cell types. Preincubation of intact adipocyte precursors with insulin resulted in significant enhancement of "low Km" cyclic AMP phosphodiesterase activity; in contrast, this hormone had no effect on fibroblast phosphodiesterase activity, a distinctive biochemical difference despite the morphological similarities between the two cell types during the early stages of adipocyte precursor maturation. Incubation of adipocyte precursors with isoproterenol resulted in the release of fatty acids into the medium, findings indicative of "hormone-stimulated" lipase activity and, hence, the operation of the entire "lipolytic cascade"; isoproterenol-stimulated lipolysis was inhibited by insulin. Release of fatty acids from fibroblasts was not observed. Thus, "hormone-stimulated" lipolysis and insulin stimulation of cyclic AMP phosphodiesterase activity are expressed during early stages of human adipocyte precursor differentiation.  相似文献   

8.
The effects of physiological glucocorticoids such as cortisol and corticosterone, as well as dexamethasone, on proliferation and differentiation of rat fat cell precursors kept in primary culture were analyzed. In serum-containing medium (10%), glucocorticoids markedly decreased cell proliferation, either on subconfluent or on confluent cultures. This effect was independent of the presence of insulin. In contrast, acute amplification of adipose conversion was observed mainly when glucocorticoids and insulin were added simultaneously. Morphological quantification of lipid-containing cells confirmed acceleration of the maturation process, and an early and specific reorganization of the cytoskeleton was detected at the ultrastructural level. In the presence of insulin, glucocorticoids also enhanced the main marker enzymes, lipoprotein lipase, and glycerol phosphate dehydrogenase. Glucocorticoid effects on precursor proliferation and differentiation were clearly dose-dependent, dexamethasone being 10 times more potent than cortisol and corticosterone. Similar results were obtained in serum-free medium, as well as in preadipocyte cultures derived from different fat deposits. This study demonstrates that in addition to an acute inhibition of precursor growth, glucocorticoids exert a clear stimulation of adipose conversion, which depends mainly on the presence of insulin and the glucocorticoid concentration.  相似文献   

9.
In obese adipose tissue, infiltrating macrophages release proinflammatory cytokines that trigger insulin resistance. An adipocyte-based platform from visceral fat would be useful to elucidate the pathology of adipose inflammation and to develop therapeutic drugs for insulin resistance. ADSCs (adipose tissue-derived mesenchymal stromal cells) expanded from subcutaneous fat are intensively studied as sources for regenerative medicine. However, the adipocyte culture system from visceral fat tissue has not been utilized yet. We aimed to establish the bioactive adipocyte platform using ADSCs from visceral fat pad. Stromal vascular fractions were processed from epididymal fat pads of Sprague-Dawley rats and three human omental fat pads, and the ADSCs were expanded using a low-serum culture method. The responses of ADSCs and ADSC-adipocytes (their adipogenic lineages) to pioglitazone, a therapeutic drug for diabesity, were evaluated by gene expression and ELISA. ADSCs (1×108) were expanded from 10 g of rat epididymal fat pads or human omental fat pads over five passages. Cell surface marker expressions revealed that visceral ADSCs were equivalent to mesenchymal stem cells. ADSC-adipocytes expanded in the low-serum culture system significantly showed higher expression of adipogenic markers [PPAR (peroxisome proliferator-activated receptor) γ, LPL (lipoprotein lipase) and FABP4 (fatty acid-binding protein 4)] and adipocytokines [adiponectin, resistin, leptin, PAI-1 (plasminogen-activator inhibitor 1) and IL (interleukin)-10] than those expanded in a high-serum culture system. Pioglitazone accelerated the adipogenic induction and increased adiponectin expression in human ADSCs by 57.9±5.8-fold (mean±S.E.M.) relative to control cells (P<0.001). Both in rat and human ADSC-adipocytes, TNF-α significantly induced proinflammatory cytokines [MCP-1 (monocyte chemoattractant protein-1) and IL-6] and suppressed adiponectin expression, while pioglitazone antagonized these effects. The present findings suggest that visceral ADSC-adipocytes expanded in low-serum culture would be useful for adiposcience and pharmacological evaluations.  相似文献   

10.
Recent studies suggest that human adipose tissue contains pluripotent stem cells similar to bone marrow-derived stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have previously demonstrated that bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. In the present study, we extend this approach to characterize adipose tissue-derived stromal cells, sometimes called processed lipoaspirate (PLA) cells. Adipose-derived stromal cells (ASCs) were isolated from inguinal fat pads of GFP transgenic mice after extensive washing with phosphate-buffered saline and treatment with collagenase. After primary culture in a control medium (Dulbecco's modified Eagle's medium+10% fetal bovine serum) and expansion to two passages, the cells were incubated in either an osteogenic medium (Dulbecco's modified Eagle's medium+10% fetal bovine serum+dexamethasone+ascorbate-2-phosphate+beta-glycerophosphate) or a chondrogenic medium (Dulbecco's modified Eagle's medium+1% fetal bovine serum+insulin+ascorbate-2-phosphate+transforming growth factor-beta1) for 2-4 weeks to induce osteogenesis and chondrogenesis, respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining, while chondrogenic differentiation was assessed by Alcian blue staining. Expression of osteocyte specific osteopontin, osteocalcin, and alkaline phosphatase, and chondrocyte specific aggrecan and type II/X collagen was confirmed by RT-PCR. ASCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes, except osteocalcin, was also detected. Incubation with chondrogenic medium induced Alcian blue positive cells and expression of aggrecan and type II/X collagen genes. No osteochondrogenic differentiation was observed in cells incubated in the control medium. ASCs from GFP transgenic mice have both osteogenic and chondrogenic potential in vitro. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ASCs for further experiments on stem cell biology and tissue engineering.  相似文献   

11.
Lipoprotein lipase activity in intact epididymal adipose tissue of fasted rats increased rapidly after treatment with insulin in vivo. In contrast, lipoprotein lipase activity in adipocytes isolated from the contralateral fat pads remained essentially unchanged. When adipocytes were incubated for 30 min at ambient temperature in vitro, about 2 times more lipoprotein lipase activity was found in the medium of cells from insulin-treated rats than in medium from cells of control animals. Following insulin treatment, extracts of tissue acetone powders separated by gel chromatography showed increases in both enzyme activity fractions obtained (designated lipoprotein lipase a and b). However, no consistent differences were observed between fractions derived from adipocyte acetone powders of insulin-treated and control animals. All the observed effects of insulin on lipoprotein lipase activity were abolished by cycloheximide treatment in vivo. These data indicate that following insulin treatment, increased lipoprotein lipase activity in adipose tissue results from enhanced enzyme secretion by the fat cell and subsequent accumulation in the tissue, thus implicating the adipocyte secretory mechanism as a major site of regulation of lipoprotein lipase activity in adipose tissue.  相似文献   

12.
Confluent 3T3-L1 Swiss mouse fibroblasts acquired morphological and biochemical characteristics of adipocytes when maintained in medium containing 10% calf serum and added insulin. Identical cultures maintained in the absence of added insulin did not differentiate into adipocytes. Incubation of confluent cultures for 48 h with 0.25 μm dexamethasone and 0.5 mm 1-methyl-3-isobutylxanthine yielded subsequent adipocyte differentiation when the culture medium contained 10% fetal calf serum. In contrast, differentiation did not occur when similarly treated cultures were maintained in medium containing 10% calf serum. The increase in glutamine synthetase which occurred during adipocyte differentiation was closely associated with an increased rate of triglyceride synthesis from acetate, with increased protein, and with increases in the activities of glycerol-3-P dehydrogenase and glucose-6-P dehydrogenase. Glutamine synthetase activity remained undetectable in insulin-treated confluent 3T3-C2 cells maintained under conditions which yielded high glutamine synthetase activity in 3T3-L1 cells. (3T3-C2 cells did not differentiate into adipocytes.) Glutamine accumulated in the culture medium of 3T3-L1 adipocytes, but it did not accumulate in the medium from identically treated 3T3-C2 cells. A half-maximal increase in glutamine synthetase specific activity occurred at a culture medium insulin concentration of 10 ng/ml. Neither adipocyte differentiation nor the rise in glutamine synthetase activity were substantially altered by maintaining confluent cultures in medium lacking added glutamine. Incubation of confluent 3T3-L1 cultures with 3 mml-methionine sulfone, a reversible inhibitor of glutamine synthetase, increased by two-fold both the activity and the cellular content of glutamine synthetase. Incubation of confluent 3T3-L1 cultures with 4 mml-glutamine and l-methionine-dl-sulfoximine, an irreversible inhibitor of glutamine synthetase activity, decreased glutamine synthetase activity to less than 5% of the activity in control cultures; however, neither cellular content of the enzyme nor synthesis rate of the enzyme were substantially altered. In the presence of added glutamine, neither methionine sulfone nor methionine sulfoximine had a significant effect on phenotypic adipocyte conversion. By contrast, when confluent cultures were incubated with methionine sulfoximine and no added glutamine, glutamine synthetase remained absent and there was no evidence of adipocyte conversion. Our data indicate (1) that added insulin is required for adipocyte differentiation of 3T3-L1 cells maintained in medium containing calf serum, (2) that glutamine synthetase activity increases during adipocyte conversion regardless of the culture conditions employed to achieve differentiation, and (3) that glutamine synthetase activity may be required for adipocyte differentiation when cultures are maintained in medium lacking added glutamine.  相似文献   

13.
The stroma-vascular fraction (SVF) of inguinal and epididymal fat pads of 4 week-old rats was studied by electron microscopy. Among the various cell types, endothelial cells and preadipocytes were found in both SVF, while mesothelial cells were only detected in the epididymal SVF. The resulting heterogeneity of primary culture and the adipoconversion of the fat cell precursors were studied in a serum-supplemented medium enriched with insulin (14.5 nM) and exogenous triglycerides. Despite the heterogeneity of the inoculum, the primary cultures were rather homogeneous, fat cell precursors being the main cell type. Distinctive contaminant fibroblast-like cells were observed in both cultures, whereas epithelial-like cells, which correspond most probably to mesothelial cells, were only found in epididymal cultures. Differentiation of fat cell precursors was assessed by the appearance of lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (GPDH). LPL activity was found in the same level in cells of both deposits while GPDH activity was elevated in inguinal vs epididymal derived stroma-vascular cells. The different adipose conversion pattern of both cultures was confirmed by morphological quantification: the maturation of epididymal fat cell precursors was faster but less extensive. These differences could be related mainly to regional localization rather than to different maturation of the two fat deposits.  相似文献   

14.
Summary The formation of fully differentiated fat cells from adipocyte precursors, implanted into the same adult rats from which they were derived, is described. Precursor strains of rat epididymal adipocyte strains were grown through five subcultures, some in the presence of radioactive thymidine. While still at a relatively undifferentiated stage, the precursors were re-implanted into a superficial intramuscular location. At the time of resection six months later, fat pads were observed at the sites of implantation. These pads contained sheets of cells morphologically identical to mature epididymal adipocytes. The fat cells in pads developing from precursors grown in the presence of [3H]thymidine, were radiolabelled. Therefore, they represent fat cells that have differentiated in vivo from the implanted cultured precursors. Implanted skin fibroblasts did not lead to the formation of adipocytes. The finding that cultured adipocyte precursors from adult rats can differentiate fully not only in vitro, but also in adult animals, supports the probable physiological significance of these cells. The precursors probably participate in fat cell turnover, which likely persists throughout adulthood.This work was supported by Medical Research Council Grant MT-5827 and Ontario Heart Foundation Grant T1-46  相似文献   

15.
The gastric and hypothalamic hormone ghrelin is the endogenous agonist of the growth hormone secretagogue receptor GHS-R1(a). Ghrelin stimulates growth hormone release and appetite via the hypothalamus. However, putative direct peripheral effects of ghrelin remain poorly understood. Rat adipose tissue expresses GHS-R1(a) mRNA, suggesting ghrelin may directly influence adipocyte function. We have investigated the effects of ghrelin on insulin-stimulated glucose uptake in isolated white adipocytes in vitro. RT-PCR confirmed the expression of GHS-R1(a) mRNA in epididymal adipose tissue. However, GHS-R1(a) expression was not detected in the peri-renal fat pads. Ghrelin increased insulin-stimulated deoxyglucose uptake in isolated white adipocytes extracted from the epididymal fat pads of male Wistar rats. Ghrelin 1000 nM significantly increased deoxyglucose uptake by 55% in the presence of 0.1 nM insulin. However, ghrelin administration in the absence of insulin had no effect on adipocyte deoxyglucose uptake, suggesting that ghrelin acts synergistically with insulin. Des-acyl ghrelin, a major circulating non-octanylated form of ghrelin, had no effect on insulin-stimulated glucose uptake. Furthermore, acylated ghrelin had no effect on deoxyglucose uptake in adipocytes from peri-renal fat pads suggesting that ghrelin may influence glucose uptake via the GHS-R1(a). Ghrelin therefore appears to directly potentiate adipocyte insulin-stimulated glucose uptake in selective adipocyte populations. Ghrelin may play a role in adipocyte regulation of glucose homeostasis.  相似文献   

16.
Differentiation of rabbit adipocyte precursor cells in a serum-free medium   总被引:1,自引:0,他引:1  
Summary A serum-free, hormone-supplemented medium containing insulin, transferrin, and triiodothyronine (ITT medium), able to support differentiation of rat adipose precursor cells, has been used to study the regulation of the development of adipocytes in the rabbit. Adipose conversion was assessed by the appearance of glycerol-3-phosphate dehydrogenase activity. Stromal-vascular cells from rabbit perirenal adipose tissue differentiated to a very low extent or not at all in ITT medium. Supplementation of ITT medium with growth hormone or fibroblast growth factor did not increase the proportion of differentiated cells. In contrast, rabbit stromal-vascular cells were able to differentiate in ITT medium supplemented with glucocorticoids (dexamethasone, corticosterone) whereas sex steroids (β-estradiol, testosterone, progesterone) did not affect the differentiation process. In the presence of both dexamethasone and insulin, 20 to 50% of rabbit stromal-vascular cells differentiated into adipocytes within 2 wk of culture. The stimulatory actions of dexamethasone or insulin were dose-dependent. Insulin-like growth Factor-I (IGF-I), did not replace insulin under our culture conditions and had only a slight effect when added along with dexamethasone (100 nM) and insulin (1.7 nM). The results suggest that glucocorticoids, in association with insulin, may play an important role in the development of adipocytes from rabbit precursor cells. This work was supported by grant 4388 from the Institut National de la Recherche Agronomique, France.  相似文献   

17.
J S Greenberger 《In vitro》1979,15(10):823-828
A unique population of human bone marrow-derived, adherent fibroblastlike cells differentiates to adipocyte morphology when grown in vitro in the presence of horse serum and hydrocortisone sodium hemisuccinate. Over the initial 8-weeks growth at 37 degrees C, 7% CO2, these cells accumulate Oil Red O-positive lipid and form colonies of over 100 cells, which persist in confluent cultures for over 30 weeks. Similar to cultures derived from mouse marrow, corticosteroid-induced adipocyte differentiation is associated with long-term granulopoiesis. Human marrow preadipocytes, as well as human, mouse and rat embryo fibroblast cell lines, failed to differentiate to adipocyte morphology in the presence of insulin. In contrast, the 3T3-L1 insulin-dependent preadipocyte cell line was not induced to differentiate in the presence of hydrocortisone. These studies demonstrate that human marrow preadipocytes are dependent upon corticosteroid for differentiation in vitro.  相似文献   

18.
Summary The mouse adipogenic cell line 1246 which possesses both insulin and insulin-like growth factor I (IGF-I) receptors was used to investigate the role of IGF-I and insulin on the proliferation of adipocyte precursors and their differentiation into mature adipocytes. Results indicate that both insulin and IGF-I stimulate the proliferation of the 1246 adipocyte precursors with IGF-I being slightly more potent than insulin. Dose-response studies indicated that both polypeptides acted at physiological concentrations corresponding to binding to their own receptors. In contrast, comparison of insulin and IGF-I capacity to stimulate terminal adipose differentiation indicated that only insulin was active when added at physiological concentrations. IGF-I could not stimulate adipocyte differentiation except at supraphysiological concentrations (100 ng/ml and above) permitting its binding to the insulin receptors on 1246 cells. Time course study of expression of early and late markers of adipose differentiation indicated that the induction of markers such as adipose differentiation-related protein (ADRP), lipoprotein lipase (LPL) and fatty acid binding protein (FAB) took place even in the absence of insulin. However, the level of early and late differentiation markers decreased to a level below the one found in undifferentiated cells when cells had been maintained in the absence of insulin after differentiation had been initiated. These data indicate that although insulin is not necessary for the early onset of the adipose differentiation program, it is stringently required for the maintenance of the adipocyte phenotype and cannot be substituted by IGF-I.  相似文献   

19.
20.
The effects of dexamethasone (DEX) on adipose precursor cells from rat adipose tissue were studied in primary culture. When added from the beginning of culture in media containing untreated fetal calf serum (SM), serum treated with charcoal to remove steroid hormones (CSM), or serum-free medium (SFM), DEX inhibited cellular growth. Lipoprotein lipase (LPL) as well as glycerophosphate dehydrogenase (GPDH) activities, markers of cellular differentiation, were also inhibited, except in CSM where LPL was stimulated. When added after cellular confluence, however, DEX had opposite effects and now stimulated cellular differentiation. This effect was highly dependent on insulin. These studies demonstrate that DEX affects adipose precursor cells in several ways, depending on the type of culture medium, the time period of exposure, and the presence of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号