首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct evidence for an enzyme-bound intermediate in the EPSP synthase reaction pathway has been obtained by rapid chemical quench-flow studies. The transient-state kinetic analysis has led to the following complete scheme: (formula; see text) Values for all 12 rate constants were obtained. Substrate trapping experiments in the forward and reverse reactions established the kinetically preferred order of binding and release of substrates and products and showed that shikimate 3-phosphate (S3P) and 5-enolpyruvoylshikimate 3-phosphate (EPSP) dissociate at rates greater than turnover in each direction. Pre-steady-state bursts of product formation were observed in the reaction in each direction indicating a rate-limiting step following catalysis. Single turnover experiments with enzyme in excess over substrate demonstrated the formation of a transient intermediate in both the forward and reverse reactions. In these experiments, the enzymatic reaction was observed by employing a radiolabel in the enol moiety of either phosphoenol pyruvate (PEP) or EPSP. The separation and quantitation of reaction products were accomplished by HPLC monitoring radioactivity. The intermediate was observed as the transient production of radiolabeled pyruvate, formed due to the breakdown of the intermediate in the acid quench used to stop the reaction. The intermediate was observed within 5-10 ms after the substrates were mixed with enzyme and decayed in a reaction paralleling the formation of product in each direction. Thus, the kinetics demonstrate directly the kinetic competence of the presumed intermediate. No pyruvate was formed, on a time scale which is relevant to catalysis, after incubation of the enzyme with dideoxy-S3P and PEP or with EPSP in the absence of phosphate; and so, the intermediate does not accumulate under these conditions. The intermediate broke down to form PEP and EPSP in addition to pyruvate when the reaction was quenched with base rather than acid; therefore, the intermediate must contain the elements of each product. Other experiments were designed to measure directly the phosphate binding rate and further constrain the PEP binding rate. The overall solution equilibrium constant in the forward direction was determined to be 180 by quantitation of radiolabeled reactants and products in equilibrium after incubation with a low enzyme concentration. The internal, active site equilibrium constant was obtained by incubation of radiolabeled S3P with excess enzyme and high concentrations of phosphate and PEP to provide the ratio of [EPSP]/[S3P] = 2.3, which is largely a measure of K4.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The carbon-13 NMR spectrum of oxaloacetate bound in the active site of citrate synthase has been obtained at 90.56 MHz. In the binary complex with enzyme, the positions of the resonances of oxaloacetate are shifted relative to those of the free ligand as follows: C-1 (carboxylate), -2.5 ppm; C-2 (carbonyl), +4.3 ppm; C-3 (methylene), -0.6 ppm; C-4 (carboxylate), +1.3 ppm. The change observed in the carbonyl chemical shift is successively increased in ternary complexes with the product [coenzyme A (CoA)], a substrate analogue (S-acetonyl-CoA), and an acetyl-CoA enolate analogue (carboxymethyl-CoA), reaching a value of +6.8 ppm from the free carbonyl resonance. Binary complexes are in intermediate to fast exchange on the NMR time scale with free oxaloacetate; ternary complexes are in slow exchange. Line widths of the methylene resonance in the ternary complexes suggest complete immobilization of oxaloacetate in the active site. Analysis of line widths in the binary complex suggests the existence of a dynamic equilibrium between two or more forms of bound oxaloacetate, primarily involving C-4. The changes in chemical shifts of the carbonyl carbon indicate strong polarization of the carbonyl bond or protonation of the carbonyl oxygen. Some of this carbonyl polarization occurs even in the binary complex. Development of positive charge on the carbonyl carbon enhances reactivity toward condensation with the carbanion/enolate of acetyl-CoA in the mechanism which has been postulated for this enzyme. The very large change in the chemical shift of the reacting carbonyl in the presence of an analogue of the enolate of acetyl-CoA supports this interpretation.  相似文献   

3.
E K Jaffe  G D Markham 《Biochemistry》1987,26(14):4258-4264
13C NMR has been used to observe the equilibrium complex of [4-13C]-5-aminolevulinate ([4-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [4-13C]ALA (chemical shift = 205.9 ppm) forms [3,5-13C]PBG (chemical shifts = 121.0 and 123.0 ppm). PBG prepared from a mixture of [4-13C]ALA and [15N]ALA was used to assign the 121.0 and 123.0 ppm resonances to C5 and C3, respectively. For the enzyme-bound equilibrium complex formed from holoenzyme and [4-13C]ALA, two peaks of equal area with chemical shifts of 121.5 and 127.2 ppm are observed (line widths approximately 50 Hz), indicating that the predominant species is probably a distorted form of PBG. When excess free PBG is present, it is in slow exchange with bound PBG, indicating an exchange rate of less than 10 s-1, which is consistent with the turnover rate of the enzyme. For the complex formed from [4-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation, the predominant species is a Schiff base adduct (chemical shift = 166.5 ppm, line width approximately 50 Hz). Free ALA is in slow exchange with the Schiff base. Activation of the MMTS-modified enzyme-Schiff base complex with 113Cd and 2-mercaptoethanol results in the loss of the Schiff base signal and the appearance of bound PBG with the same chemical shifts as for the bound equilibrium complex with Zn(II) enzyme. Neither splitting nor broadening from 113Cd-13C coupling was observed.  相似文献   

4.
Spink E  Hewage C  Malthouse JP 《Biochemistry》2007,46(44):12868-12874
The peptide-derived glyoxal inhibitor Z-Ala-Pro-Phe-glyoxal, where Z is benzyloxycarbonyl, is an extremely potent inhibitor of chymotrypsin. When it is bound to chymotrypsin both the glyoxal (RCOCHO) keto and aldehyde carbons are sp3 hybridized with chemical shifts of 100.7 and 91.4 ppm, respectively. However it is has not been shown whether these carbons are bound as hydrates or whether the active-site serine has reacted with them to form the corresponding hemiketal or hemiacetal. In this study we use 18O isotope shifts to determine whether one or two exchangeable oxygen atoms are attached to the glyoxal keto or aldehyde carbons when it is free in water or bound to alpha-chymotrypsin. Both the 18O isotope shifts at the free and enzyme-bound aldehyde carbons were approximately 0.04 ppm showing that it is hydrated in both the free and bound forms. The 18O isotope shift for the free hydrated keto carbon at 96.6 ppm was 0.046-0.049 ppm, but this was reduced to 0.026 ppm when the glyoxal inhibitor was bound to alpha-chymotrypsin showing that the nonexchangeable serine hydroxyl group has formed a hemiketal with glyoxal keto carbon. Deuterium isotope shifts on the 13C NMR signals from the glyoxal inhibitor when it free and hydrated, when it is bound to chymotrypsin, as well as when it forms a model hemiketal confirm that the serine hydroxyl group has formed a hemiketal with the glyoxal keto carbon. The reasons for the different reaction specificities of glyoxal inhibitors for the active-site nucleophiles of serine and cysteine proteases are discussed.  相似文献   

5.
Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through 13C and 15N NMR. To our knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by 13C or 15N NMR. Here we extend our 13C NMR studies to PBGS complexes with [3,3-2H2,3-13C]ALA and report 15N NMR studies of [15N]ALA bound to PBGS. As in our previous 13C NMR studies, observation of enzyme-bound 15N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pKa is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent (kexchange greater than 10(2) s-1). For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C4 of ALA and an active-site lysine. The 13C chemical shift of [3,3-2H2,3-13C]ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between [15N]ALA and hydrazine or hydroxylamine, the 15N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation; again the protons are in rapid exchange with solvent. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C4 of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.  相似文献   

6.
We report here the construction of a mutant version of Escherichia coli alkaline phosphatase (AP) in which the active site Ser was replaced by Thr (S102T), in order to investigate whether the enzyme can utilize Thr as the nucleophile and whether the rates of the critical steps in the mechanism are altered by the substitution. The mutant AP with Thr at position 102 exhibited an approximately 4000-fold decrease in k(cat) along with a small decrease in Km. The decrease in catalytic efficiency of approximately 2000-fold was a much smaller drop than that observed when Ala or Gly were substituted at position 102. The mechanism by which Thr can substitute for Ser in AP was further investigated by determining the X-ray structure of the S102T enzyme in the presence of the Pi (S102T_Pi), and after soaking the crystals with substrate (S102T_sub). In the S102T_Pi structure, the Pi was coordinated differently with its position shifted by 1.3 A compared to the structure of the wild-type enzyme in the presence of Pi. In the S102T_sub structure, a covalent Thr-Pi intermediate was observed, instead of the expected bound substrate. The stereochemistry of the phosphorus in the S102T_sub structure was inverted compared to the stereochemistry in the wild-type structure, as would be expected after the first step of a double in-line displacement mechanism. We conclude that the S102T mutation resulted in a shift in the rate-determining step in the mechanism allowing us to trap the covalent intermediate of the reaction in the crystal.  相似文献   

7.
The Fe(II) and 2-oxoglutarate-dependent dioxygenase deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was expressed at ca 25 % of total soluble protein in Escherichia coli and purified by an efficient large-scale procedure. Purified protein catalysed the conversions of penicillins N and G to deacetoxycephems. Gel filtration and light scattering studies showed that in solution monomeric apo-DAOCS is in equilibrium with a trimeric form from which it crystallizes. DAOCS was crystallized +/-Fe(II) and/or 2-oxoglutarate using the hanging drop method. Crystals diffracted to beyond 1.3 A resolution and belonged to the R3 space group (unit cell dimensions: a=b=106.4 A, c=71.2 A; alpha=beta=90 degrees, gamma=120 degrees (in the hexagonal setting)). Despite the structure revealing that Met180 is located close to the reactive oxidizing centre of DAOCS, there was no functional difference between the wild-type and selenomethionine derivatives. X-ray absorption spectroscopic studies in solution generally supported the iron co-ordination chemistry defined by the crystal structures. The Fe K-edge positions of 7121.2 and 7121.4 eV for DAOCS alone and with 2-oxoglutarate were both consistent with the presence of Fe(II). For Fe(II) in DAOCS the best fit to the Extended X-ray Absorption Fine Structure (EXAFS) associated with the Fe K-edge was found with two His imidazolate groups at 1.96 A, three nitrogen or oxygen atoms at 2.11 A and one other light atom at 2.04 A. For the Fe(II) in the DAOCS-2-oxoglutarate complex the EXAFS spectrum was successfully interpreted by backscattering from two His residues (Fe-N at 1.99 A), a bidentate O,O-co-ordinated 2-oxoglutarate with Fe-O distances of 2.08 A, another O atom at 2.08 A and one at 2.03 A. Analysis of the X-ray crystal structural data suggests a binding mode for the penicillin N substrate and possible roles for the C terminus in stabilising the enzyme and ordering the reaction mechanism.  相似文献   

8.
The riboflavin synthase catalyzed reaction proceeds through a pentacyclic intermediate of undetermined stereochemistry. Calculations at the B3LYP/6-31G(d) level of theory indicate that the trans pentacyclic structure is favored over the cis by 3.3kcal/mol. A model of the the trans, but not the cis, pentacycle in the enzyme active site shows good fitness and the availability of highly conserved protein residues for catalytic interactions. The model of the trans intermediate complements the model of the two substrates in the active site and allows for a hypothetical mechanism of the roles of specific protein residues in catalysis to be proposed.  相似文献   

9.
A unique resonance in the 13C NMR spectrum of [13C]methylated ribonuclease A has been assigned to a N epsilon, N-dimethylated active site residue, lysine 41. The chemical shift of this resonance was studied over the pH range 3 to 11, and the titration curve showed two inflection points, at pH 5.7 and 9.0. The higher pKa, designated pKa1, was assigned to the ionization of the lysyl residue itself while the pKa of 5.7, designated pKa2, was assigned on the basis of its pKa to the ionization of a histidyl residue which is somehow coupled to lysine 41. Both pKa values are measurably perturbed by the binding of active site ligands including nucleotides, nucleosides, phosphate, and sulfate. In most cases, the alterations in pKa values induced by the ligands were larger for pKa2. The ligand-induced perturbations in pKa2 generally paralleled those reported for histidine 12, another active site residue (Griffin, J. H., Schechter, A. N., and Cohen, J. S. (1973) Ann. N. Y. Acad. Sci. 222, 693-708). The sensitivity of the N epsilon, N-dimethylated lysine 41 resonance to the histidyl ionization may result from a conformational change in the active site region of ribonuclease which is coupled to the histidyl ionization. This coupling between lysine 41 and another ribonuclease residue, which has not been documented previously, offers new insight into the interrelationship between residues in the active site of this well characterized enzyme.  相似文献   

10.
E K Jaffe  G D Markham 《Biochemistry》1988,27(12):4475-4481
13C NMR has been used to observe the equilibrium complex of [5,5-2H,5-13C]-5-aminolevulinate [( 5,5-2H,5-13C]ALA) bound to porphobilinogen (PBG) synthase (5-aminolevulinate dehydratase), a 280,000-dalton protein. [5,5-2H,5-13C]ALA (chemical shift 46.9 ppm in D2O) was prepared from [5-13C]ALA through enolization in deuteriated neutral potassium phosphate buffer. In the PBG synthase reaction [5,5-2H,5-13C]ALA forms [2,11,11-2H,2,11-13C]PBG (chemical shifts 116.2 ppm for C2 and 34.2 ppm for C11 in D2O). For the complex formed between [5,5-2H,5-13C]ALA and methyl methanethiosulfonate (MMTS) modified PBG synthase, which does not catalyze PBG formation but can form a Schiff base adduct, the chemical shift of 44.2 ppm (line width 92 Hz) identifies an imine structure as the predominant tautomeric form of the Schiff base. By comparison to model compounds, the stereochemistry of the imine has been deduced; however, the protonation state of the imine nitrogen remains unresolved. Reconstitution of the MMTS-modified enzyme-Schiff base complex with Zn(II) and 2-mercaptoethanol results in the holoenzyme-bound equilibrium complex; this complex contains predominantly enzyme-bound PBG, and spectra reveal two peaks from bound PBG and two from free PBG. For bound PBG, C2 is -2.8 ppm from the free signal and C11 is +2.6 ppm from the free signal; the line widths of the bound signals are 55 and 75 Hz, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
L J Ming  L Que  A Kriauciunas  C A Frolik  V J Chen 《Biochemistry》1991,30(50):11653-11659
The active site structure of isopenicillin N synthase (IPNS) has been previously studied by the use of M?ssbauer, EPR, electronic absorption, and NMR spectroscopies [Chen, V.J., Frolik, C.A., Orville, A.M., Harpel, M.R., Lipscomb, J.D., Surerus, K.K., & Münck, E. (1989) J. Biol. Chem. 264, 21677-21681; Ming, L.-J., Que, L., Jr., Kriauciunas, A., Frolik, C.A., & Chen, V.J. (1990) Inorg. Chem. 26, 1111-1112]. These studies have revealed three coordinated His residues along with three sites for substrate [delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine, ACV], NO, and water binding on the active Fe(II) of IPNS. We report here NMR studies of Fe(II)IPNS and its Co(II)-substituted derivative [Co(II)IPNS]. By the use of NOE techniques on the Co(II)IPNS-ACV complex, we have recognized a -CH2-CH less than spin system at 14.6, 24.3, and 38.6 ppm that is assigned to the alpha and beta protons of a coordinated Asp residue. Corresponding solvent nonexchangeable features are found near 40 ppm in Fe(II)IPNS and the Fe(II)IPNS-ACV complex, but the peaks are too broad for NOE effects to be observed. The binding of NO to the Fe(II) center results in a significant change in the configuration of the metal site: (a) The C beta H2 resonances due to the coordinated Asp residue disappear. The loss of the signal may indicate a change of the carboxylate configuration from syn-like to anti-like or, less likely, its displacement by NO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A number of complex biochemical problems have been solved recently by application of new techniques in which 31P and 13C NMR spectroscopy is used. Oxygen isotope exchange phenomena were studied by these NMR methods and used to analyze individual mechanistic events in enzymatic reactions. The existence of intermediates in the reactions catalyzed by glutamine synthetase (EC 6.3.1.2) and carbamyl-phosphate synthetase (EC 2.7.2.9) has been established as well as the kinetic competence of these intermediates for each enzyme. The NMR theory and kinetic experiments required to conduct such studies are discussed.  相似文献   

13.
A new analog of the EPSP synthase enzyme reaction intermediate 1, containing a 3-malonate ether moiety in place of the usual 3-phosphate group, was synthesized from 3,5-dihydroxybenzoic acid. This simple, synthetically accessible aromatic compound (5) is an effective competitive inhibitor versus S3P with an apparent K1 of 1.3 ± 0.22 μM. This result demonstrates that a simple benzene ring can be a suitable achiral substitute for the more complex shikimate ring in the design of EPSP synthase inhibitors. Furthermore, the greater potency of 5 versus the phenol 6, glycolate 7 and the gallic acid analog 8 demonstrates the requirement for multiple anionic charges at the dihydroxybenzoate 5-position in order to attain effective inhibition of this enzyme. However, this 3-malonate ether substituted compound was at least 10-fold less effective as a bisubstrate inhibitor than the corresponding 3-phosphate. This suggests that tetrahedral intermediate mimics possessing a 3-malonate ether moiety are less effective than their corresponding 3-phosphates in accessing the optimal enzyme conformation stabilizing 1.  相似文献   

14.
T7 endonuclease I is a nuclease that is selective for the structure of the four-way DNA junction. The active site is similar to those of a number of restriction enzymes. We have solved the crystal structure of endonuclease I with a wild-type active site. Diffusion of manganese ions into the crystal revealed two peaks of electron density per active site, defining two metal ion-binding sites. Site 1 is fully occupied, and the manganese ion is coordinated by the carboxylate groups of Asp55 and Glu65, and the main chain carbonyl of Thr66. Site 2 is partially occupied, and the metal ion has a single protein ligand, the remaining carboxylate oxygen atom of Asp55. Isothermal titration calorimetry showed the sequential exothermic binding of two manganese ions in solution, with dissociation constants of 0.58 +/- 0.019 and 14 +/- 1.5 mM. These results are consistent with a two metal ion mechanism for the cleavage reaction, in which the hydrolytic water molecule is contained in the first coordination sphere of the site 1-bound metal ion.  相似文献   

15.
The predominant biosynthetic route to vitamin B6 is catalyzed by a single enzyme. The synthase subunit of this enzyme, Pdx1, operates in concert with the glutaminase subunit, Pdx2, to catalyze the complex condensation of ribose 5-phosphate, glutamine and glyceraldehyde 3-phosphate to form pyridoxal 5'-phosphate, the active form of vitamin B6. In previous studies it became clear that many if not all of the reaction intermediates were covalently bound to the synthase subunit, thus making them difficult to isolate and characterize. Here we show that it is possible to follow a single turnover reaction by heteronuclear NMR using (13)C- and (15)N-labeled substrates as well as (15)N-labeled synthase. By denaturing the enzyme at points along the reaction coordinate, we solved the structures of three covalently bound intermediates. This analysis revealed a new 1,5 migration of the lysine amine linking the intermediate to the enzyme during the conversion of ribose 5-phosphate to pyridoxal 5'-phosphate.  相似文献   

16.
A Ru-diimine wire, [(4,4′,5,5′-tetramethylbipyridine)2Ru(F9bp)]2+ (tmRu-F9bp, where F9bp is 4-methyl-4′-methylperfluorobiphenylbipyridine), binds tightly to the oxidase domain of inducible nitric oxide synthase (iNOSoxy). The binding of tmRu-F9bp is independent of tetrahydrobiopterin, arginine, and imidazole, indicating that the wire resides on the surface of the enzyme, distant from the active-site heme. Photoreduction of an imidazole-bound active-site heme iron in the enzyme-wire conjugate (kET = 2(1) × 107 s−1) is fully seven orders of magnitude faster than the in vivo process.  相似文献   

17.
The tetrahedral intermediate formed at the active site of 5-enolpyruvoylshikimate-3-phosphate synthase by reaction of shikimate 3-phosphate with phosphoenolpyruvate was isolated, and its properties in solution and in reaction with enzyme were examined. The intermediate was moderately stable at pH 7.0, with a half-life of 45 min, and showed increasing lifetimes with increasing pH (t1/2 greater than 48 h at pH greater than or equal to 12). The intermediate bound to the enzyme rapidly, with a second order rate constant of 5 x 10(7) M-1 s-1. Upon binding to the enzyme, it reacted to form both products (5-enolpyruvoylshikimate 3-phosphate, Pi) and substrates (shikimate 3-phosphate, phosphoenolpyruvate) in proportions predicted by the rate constants defined previously for reactions occurring at the active enzyme site (Anderson, K.S. Sikorski, J.A., and Johnson, K. A. (1988b) Biochemistry 27, 7395-7406). The kinetics of binding and dissociation of stable phosphonate analogs of the tetrahedral intermediate (Alberg, D., and Bartlett, P.A. (1989) J. Am. Chem. Soc. 111, 2337) were also examined. In comparison to the intermediate, the analogs bound to the enzyme 300-10,000 fold more slowly and at least 300-20,000 times mroe weakly. These results clarify the definitions for kinetic competence of enzyme intermediates and call into question the significance of the slow binding of analogs of transition states or enzyme intermediates.  相似文献   

18.
C1-tetrahydrofolate (THF) synthase is a trifunctional protein possessing the activities 10-formyl-THF synthetase, 5,10-methenyl-THF cyclohydrolase, and 5,10-methylene-THF dehydrogenase. The current model divides this protein into two functionally independent domains with dehydrogenase/cyclohydrolase activities sharing an overlapping active site on the N-terminal domain and synthetase activity associated with the C-terminal domain. Previous chemical modification studies on C1-THF synthase from the yeast Saccharomyces cerevisiae indicated at least two cysteinyl residues involved in the dehydrogenase/cyclohydrolase reactions [Appling, D. R., & Rabinowitz, J. C. (1985) Biochemistry 24, 3540-3547]. In the present work, site-directed mutagenesis of the S. cerevisiae ADE3 gene, which encodes C1-THF synthase, was used to individually change each cysteine contained within the dehydrogenase/cyclohydrolase domain (Cys-11, Cys-144, and Cys-257) to serine. The resulting proteins were overexpressed in yeast and purified for kinetic analysis. Site-specific mutations in the dehydrogenase/cyclohydrolase domain did not affect synthetase activity, consistent with the proposed domain structure. The C144S and C257S mutations result in 7- and 2-fold increases, respectively, in the dehydrogenase Km for NADP+. C144S lowers the dehydrogenase maximal velocity roughly 50% while C257S has a maximal velocity similar to that of the wild type. Cyclohydrolase catalytic activity is reduced 20-fold by the C144S mutation but increased 2-fold by the C257S mutation. Conversion of Cys-11 to serine has a negligible effect on dehydrogenase/cyclohydrolase activity. A double mutant, C144S/C257S, results in catalytic properties roughly multiplicative of the individual mutations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The interaction of 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, 4,5-dideoxyshikimate 3-phosphate (ddS3P), and [2-13C]-and [3-13C]phosphoenolpyruvate (PEP) has been examined by 13C NMR spectroscopy. Although no resonances due to a dead-end intermediate complex could be detected, an enzyme active site specific formation of pyruvate was observed. The interaction of EPSP synthase with shikimate 3-phosphate (S3P) and [2-13C]- or [3-13C]PEP has been examined by 13C NMR spectroscopy. With [2-13C]PEP, in addition to the resonances due to [2-13C]PEP and [8-13C]EPSP, new resonances appeared at 164.8, 110.9, and 107.2 ppm. The resonance at 164.8 ppm has been assigned to enzyme-bound EPSP. The resonance at 110.9 ppm has been assigned to C-8 of an enzyme-free tetrahedral intermediate of the sort originally proposed by Levin and Sprinson [Levin, J. G., & Sprinson, D. B. (1964) J. Biol. Chem. 239, 1142-1150] and recently independently observed by Anderson et al. [Anderson, K. S., Sikorski, J. A., Benesi, A. J., & Johnson, K. A. (1988) J. Am. Chem. Soc. 110, 6577-6579]. The resonance at 107.2 ppm has been assigned to an enzyme-bound intermediate whose structure is closely related to that of the tetrahedral intermediate. With [3-13C]PEP, new resonances appeared at 88.9, 26.2, 25.5, and 24.5 ppm. The resonance at 88.9 ppm has been assigned to enzyme-bound EPSP. The resonance at 26.2 ppm, which was found to correlate with 1.48 ppm by isotope-edited multiple quantum coherence 1H NMR spectroscopy, has been assigned to the methyl group 4-hydroxy-4-methylketoglutarate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Shah DD  Conrad JA  Heinz B  Brownlee JM  Moran GR 《Biochemistry》2011,50(35):7694-7704
4-Hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) each catalyze similar complex dioxygenation reactions using the substrates 4-hydroxyphenylpyruvate (HPP) and dioxygen. The reactions differ in that HPPD hydroxylates at the ring C1 and HMS at the benzylic position. The HPPD reaction is more complex in that hydroxylation at C1 instigates a 1,2-shift of an aceto substituent. Despite that multiple intermediates have been observed to accumulate in single turnover reactions of both enzymes, neither enzyme exhibits significant accumulation of the hydroxylating intermediate. In this study we employ a product analysis method based on the extents of intermediate partitioning with HPP deuterium substitutions to measure the kinetic isotope effects for hydroxylation. These data suggest that, when forming the native product homogentisate, the wild-type form of HPPD produces a ring epoxide as the immediate product of hydroxylation but that the variant HPPDs tended to also show the intermediacy of a benzylic cation for this step. Similarly, the kinetic isotope effects for the other major product observed, quinolacetic acid, showed that either pathway is possible. HMS variants show small normal kinetic isotope effects that indicate displacement of the deuteron in the hydroxylation step. The relatively small magnitude of this value argues best for a hydrogen atom abstraction/rebound mechanism. These data are the first definitive evidence for the nature of the hydroxylation reactions of HPPD and HMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号