首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adenoviruses with nonidentical terminal sequences are viable.   总被引:2,自引:1,他引:1       下载免费PDF全文
R Lipp  F L Graham 《Journal of virology》1989,63(12):5133-5141
Adenovirus genomes consist of linear DNA molecules containing inverted terminal repeat sequences (ITRs) of 100 to 200 base pairs. The importance of identical termini for viability of adenoviruses was investigated. The viral strains used in this study were wild-type adenovirus type 5 (Ad5) and a variant Ad2 strain with termini which were distinct from those of all other human adenoviruses sequenced to date. A hybrid virus (sub54), obtained by recombination between Ad2 and Ad5, derived the left 42 to 52% of its genome from Ad2 and the right 58 to 48% from Ad5. Southern blotting analysis with labeled oligodeoxynucleotides indicated that both Ad2 and Ad5 ITRs were present in sub54 viral DNA preparations, and successive plaque purifications of sub54 demonstrated that viruses with nonidentical terminal sequences were viable but were rapidly converted to viruses with identical ends. Cloning of the sub54 genome as a bacterial plasmid supported the observations made by analysis of sub54 virion DNA. A plasmid, pFG154, was isolated which contained the entire adenovirus genome with an Ad2 ITR at the left terminus covalently linked to an Ad5 ITR at the right terminus. Upon transfection of mammalian cells with pFG154, viral progeny were obtained which had all possible combinations of termini, thus confirming that molecules with nonidentical termini are viable. Pure populations of viruses with nonidentical termini could not be isolated, suggesting efficient repair of one end with the opposite terminus used as a template. A model for this process is proposed involving strand displacement replication and emphasizing the importance of panhandle formation (annealing of terminal sequences) as a replicative intermediate.  相似文献   

3.
P. J. Ferris 《Genetics》1989,122(2):363-377
While pursuing a chromosomal walk through the mt+ locus of linkage group VI of Chlamydomonas reinhardtii, I encountered a 12-kb sequence that was found to be present in approximately 12 copies in the nuclear genome. Comparison of various C. reinhardtii laboratory strains provided evidence that the sequence was mobile and therefore a transposon. One of two separate natural isolates interfertile with C. reinhardtii, C. smithii (CC-1373), contained the transposon, but at completely different locations in its nuclear genome than C. reinhardtii; and a second, CC-1952 (S1-C5), lacked the transposon altogether. Genetic analysis indicated that the transposon was found at dispersed sites throughout the genome, but had a conserved structure at each location. Sequence homology between the termini was limited to an imperfect 15-bp inverted repeat. An 8-bp target site duplication was created by insertion; transposon sequences were completely removed upon excision leaving behind both copies of the target site duplication, with minor base changes. The transposon contained an internal region of unique repetitive sequence responsible for restriction fragment length heterogeneity among the various copies of the transposon. In several cases it was possible to identify which of the dozen transposons in a given strain served as the donor when a transposition event occurred. The transposon often moved into a site genetically linked to the donor, and transposition appeared to be nonreplicative. Thus the mechanism of transposition and excision of the transposon, which I have named Gulliver, resembles that of certain higher plant transposons, like the Ac transposon of maize.  相似文献   

4.
Most of the well-characterized mitochondrial genomes from diverse green algal lineages are circular mapping DNA molecules; however, Chlamydomonas reinhardtii has a linear 15.8 kb unit mitochondrial genome with 580 or 581 bp inverted repeat ends. In mitochondrial-enriched fractions prepared from Polytomella parva (=P. agilis), a colorless, naturally wall-less relative of C. reinhardtii, we have detected two linear mitochondrial DNA (mtDNA) components with sizes of 13.5 and 3.5 kb. Sequences spanning 97% and 86% of the 13.5- and 3.5-kb mtDNAs, respectively, reveal that these molecules contain long, at least 1.3 kb, homologous inverted repeat sequences at their termini. The 3.5-kb mtDNA has only one coding region (nad6), the functionality of which is supported by both the relative rate at which it has accumulated nonsynonymous nucleotide substitutions and its absence from the 13.5-kb mtDNA which encodes nine genes (i.e., large and small subunit rRNA [LSU and SSU rRNA] genes, one tRNA gene, and six protein-coding genes). On the basis of DNA sequence data, we propose that a variant start codon, GTG, is utilized by the P. parva 13.5-kb mtDNA-encoded gene, nad5. Using the relative rate test with Chlamydomonas moewusii (=C. eugametos) as the outgroup, we conclude that the nonsynonymous nucleotide substitution rate in the mitochondrial protein-coding genes of P. parva is on an average about 3.3 times that of the C. reinhardtii counterparts.  相似文献   

5.
6.
Structure of the rat cytomegalovirus genome termini.   总被引:3,自引:2,他引:1       下载免费PDF全文
C Vink  E Beuken    C A Bruggeman 《Journal of virology》1996,70(8):5221-5229
The lytic replication cycle of herpesviruses can be divided into the following three steps: (i) circularization, in which, after infection, the termini of the linear double-stranded viral genome are fused; (ii) replication, in which the circular DNA serves as template for DNA replication, which generates large DNA concatemers; and (iii) maturation, in which the concatemeric viral DNA is processed into unit-length genomes, which are packaged into capsids. Sequences at the termini of the linear virion DNA are thought to play a key role in both genome circularization and maturation. To investigate the mechanism of these processes in the replication of rat cytomegalovirus (RCMV), we cloned, sequenced, and characterized the genomic termini of this betaherpesvirus. Both RCMV genomic termini were found to contain a single copy of a direct terminal repeat (TR). The TR sequence is 504 bp in length, has a high GC content (76%), and is not repeated at internal sites within the RCMV genome. The TR comprises several small internal direct repeats as well as two sequences which are homologous to herpesvirus pac-1 and pac-2 sites, respectively. The organization of the RCMV TR is unique among cytomegaloviruses with respect to the position of the pac sequences: pac-1 is located near the left end of the TR, whereas pac-2 is present near the right end. Both RCMV DNA termini carry an extension of a single nucleotide at the 3' end. Since these nucleotides are complementary, circularization of the viral genome is likely to occur via a simple ligation reaction.  相似文献   

7.
With the exception of a few genes, most of the mitochondrial (mt) genome of Pneumocystis carinii has not previously been sequenced. Shotgun sequences generated as a result of the Pneumocystis Genome Project (PGP) were assembled with the gap4 assembly program into a 23-kb contig. Annotation of the mt genome identified 4 open reading frames and 20 tRNAs in addition to 17 other genes: ATP synthase, subunits 6, 8, and 9; cytochrome c oxidase, subunits 1, 2, and 3; NADH dehydrogenase, subunits 1, 2, 3, 4, 4L, 5, and 6; apocytochrome b; RNase P RNA gene; and the mitochondrial large and small ribosomal RNA subunits. A 24-bp unit that repeated from one to five times was identified interior to the ends of the mt genome. Migration of the genome on CHEF gels was consistent with that of linear DNA and digestion with BAL31 showed a concomitant reduction in size of the genome, a characteristic of linear DNA. Together with the identification of terminal repeats similar to those found in other linear fungal mt genomes and the inability to join the ends by PCR, these data provide strong evidence that the mt genome of P. carinii is linear.  相似文献   

8.
9.
A K Bej  M H Perlin 《Gene》1991,98(1):135-140
Plasmid pUCH1 is a 5.2-kb pUC18 construct bearing the hygB gene fused to a promoter from Cochliobolus heterostrophus. Haploid cells of the basidiomycete, Ustilago violacea, were transformed with this plasmid. In addition to multiple integrations of plasmid sequences into U. violacea nuclear DNA, vector sequences independent of the nuclear genome were indicated by Southern-blot analysis using all or part of pUCH1 as a probe. Hybridization also revealed intact pUCH1 and several larger derivatives in satellite bands from CsCl-bis-benzamide gradients of whole cellular DNA and in DNA from purified mitochondria [mitochondrial (mt) DNA preparations] of transformed U. violacea; circular DNAs consistent with the sizes of DNAs in these satellite bands were seen in electron microscope analyses of the same mt DNA preparations as well. The plasmids could be detected in mt DNA preparations even after 30 generations of transformant growth under selective pressure. Transformation of Escherichia coli by these mt DNA preparations produced bacterial transformants bearing intact pUCH1, as well as several pUCH1 derivatives, including pUCH2, an approx. 8.0-kb plasmid. A 2.5-kb EcoRI fragment from pUCH2 showed only weak hybridization with pUCH1. This unique fragment did hybridize strongly with mt DNA from untransformed U. violacea. This derivative thus appears to have acquired mt sequences from U. violacea.  相似文献   

10.
11.
P. J. Ferris 《Genetics》1995,141(2):543-549
The tight linkage observed between the mating-type (mt) locus of Chlamydomonas reinhardtii and three auxotrophic mutations--nic-7 (nicotinamide-requiring), ac-29 (acetate-requiring), and thi-10 (thiamine-requiring)--has led to the hypothesis that recombination is suppressed in the mt region. The physical location of these three genes has been established by transformation with sets of cloned DNA from the mt region. They lie to the left and right of the highly rearranged (R) domain of the mt locus, which has been proposed to be responsible for the recombinational suppression in the region. The cloned nic-7(+) and thi-10(+) genes will be useful as selectable markers for cotransformation experiments.  相似文献   

12.
《Gene》1996,169(2):251-255
The mitochondrial (mt) genome is a potential means of gene delivery to human cells for therapeutic expression. As a first step towards this, we have synthesised a gene coding for mature human ornithine transcarbamylase (OTC) by recursive PCR using 18 oligodeoxyribonucleotides, each 70–80 nucleotides in length, with codons which should allow translation in accordance with both mammalian mt and universal codon usage. Flanking mt DNA sequences were incorporated which are designed to facilitate site-specific cloning into the mt genome. Expression of this human gene in Escherichia coli leads to an immunoreactive OTC product of the correct size and N-terminal amino-acid sequence, but which forms inclusion bodies and lacks enzymatic activity  相似文献   

13.
A partial genomic DNA library of Chlamydomonas reinhardtii was screened with an (AC)11 probe for the presence of (CA/GT)n simple sequence repeats (SSRs). Based on the frequency of these repeats in the partial genomic library, we estimate that (CA/GT)n repeats occur at a rate of about one every 17.7 kb in the C. reinhardtii genome. Ten positive clones were sequenced and four polymerase chain reaction (PCR) primer sets flanking (CA/GT)n sequences were constructed for four loci. The PCR was used to specifically amplify these regions from multiple isolates of C. reinhardtii. All four loci were highly polymorphic in the C. reinhardtii isolates. A simple Mendelian inheritance pattern was found for all four loci, which showed 2:2 segregation in the tetrads resulting from a cross between C. reinhardtii and C. smithii. Our results suggest that these simple sequence repeat DNA loci will be useful for identity testing, population studies, linkage analysis, and genome mapping in Chlamydomonas.  相似文献   

14.
15.
Extrachromosomal DNA in the Apicomplexa.   总被引:8,自引:0,他引:8       下载免费PDF全文
Malaria and related apicomplexan parasites have two highly conserved organellar genomes: one is of plastid (pl) origin, and the other is mitochondrial (mt). The organization of both organellar DNA molecules from the human malaria parasite Plasmodium falciparum has been determined, and they have been shown to be tightly packed with genes. The 35-kb circular DNA is the smallest known vestigial plastid genome and is presumed to be functional. All but two of its recognized genes are involved with genetic expression: one of the two encodes a member of the clp family of molecular chaperones, and the other encodes a conserved protein of unknown function found both in algal plastids and in eubacterial genomes. The possible evolutionary source and intracellular location of the plDNA are discussed. The 6-kb tandemly repeated mt genome is the smallest known and codes for only three proteins (cytochrome b and two subunits of cytochrome oxidase) as well as two bizarrely fragmented rRNAs. The organization of the mt genome differs somewhat among genera. The mtDNA sequence provides information not otherwise available about the structure of apicomplexan cytochrome b as well as the unusually fragmented rRNAs. The malarial mtDNA has a phage-like replication mechanism and undergoes extensive recombination like the mtDNA of some other lower eukaryotes.  相似文献   

16.
Quantitative real-time PCR (qPCR) has become a gold standard for the quantification of nucleic acids and microorganism abundances, in which plasmid DNA carrying the target genes are most commonly used as the standard. A recent study showed that supercoiled circular confirmation of DNA appeared to suppress PCR amplification. However, to what extent to which different structural types of DNA (circular versus linear) used as the standard may affect the quantification accuracy has not been evaluated. In this study, we quantitatively compared qPCR accuracies based on circular plasmid (mostly in supercoiled form) and linear DNA standards (linearized plasmid DNA or PCR amplicons), using proliferating cell nuclear gene (pcna), the ubiquitous eukaryotic gene, in five marine microalgae as a model gene. We observed that PCR using circular plasmids as template gave 2.65-4.38 more of the threshold cycle number than did equimolar linear standards. While the documented genome sequence of the diatom Thalassiosira pseudonana shows a single copy of pcna, qPCR using the circular plasmid as standard yielded an estimate of 7.77 copies of pcna per genome whereas that using the linear standard gave 1.02 copies per genome. We conclude that circular plasmid DNA is unsuitable as a standard, and linear DNA should be used instead, in absolute qPCR. The serious overestimation by the circular plasmid standard is likely due to the undetected lower efficiency of its amplification in the early stage of PCR when the supercoiled plasmid is the dominant template.  相似文献   

17.
18.
Parent-specific, randomly amplified polymorphic DNA (RAPD) markers were obtained from total genomic DNA ofChlamydomonas reinhardtii. Such parent-specific RAPD bands (genomic fingerprints) segregated uniparentally (through mt+) in a cross between a pair of polymorphic interfertile strains ofChlamydomonas (C. reinhardtii andC. minnesotti), suggesting that they originated from the chloroplast genome. Southern analysis mapped the RAPD-markers to the chloroplast genome. One of the RAPD-markers, “P2” (1.6 kb) was cloned, sequenced and was fine mapped to the 3 kb region encompassing 3′ end of 23S, full 5S and intergenic region between 5S and psbA. This region seems divergent enough between the two parents, such that a specific PCR designed for a parental specific chloroplast sequence within this region, amplified a marker in that parent only and not in the other, indicating the utility of RAPD-scan for locating the genomic regions of sequence divergence. Remarkably, the RAPD-product, “P2” seems to have originated from a PCR-amplification of a much smaller (about 600 bp), but highly repeat-rich (direct and inverted) domain of the 3 kb region in a manner that yielded no linear sequence alignment with its own template sequence. The amplification yielded the same uniquely “sequence-scrambled” product, whether the template used for PCR was total cellular DNA, chloroplast DNA or a plasmid clone DNA corresponding to that region. The PCR product, a "unique" new sequence, had lost the repetitive organization of the template genome where it had originated from and perhaps represented a “complex path” of copy-choice replication.  相似文献   

19.
Streptomyces achromogenes subsp. rubradiris plated at low density on 1,000 micrograms of spectinomycin per ml initially produces slow-growing, bald colonies from which arise, in a spatially and temporally random fashion, foci of rapidly growing aerial mycelium-forming cells whose DNA contains an approximately 200- to 300-fold amplification of an 8-kilobase (kb) sequence. This sequence was cloned in Escherichia coli on pBR322 and physically characterized. It was separately cloned also in Streptomyces lividans as a BglII fragment and shown to impart high-level resistance to spectinomycin in an orientation-independent manner when present in either the high-copy-number vector pIJ702 or the unit-copy-number vector pIJ943. A spectinomycin resistance determinant was shown to reside on a 1.7-kb SphI-BglII subfragment. Analysis of Southern blots of restriction enzyme digests of wild-type S. achromogenes DNA probed with the labeled 8-kb DNA sequence resulted in the identification and subsequent cloning in S. lividans of a 10.4-kb BamHI fragment which probably includes the complete 8.8-kb amplifiable unit of DNA. This unit is present in wild-type S. achromogenes and in the initially slow-growing, bald colonies arising on 1,000 micrograms of spectinomycin per ml as a single copy. It carries two 0.8-kb direct repeats at its termini as well as the spectinomycin resistance determinant close to one of these termini. About 5% of protoplast regenerants from wild-type S. achromogenes and 77% of protoplast regenerants from the rapidly growing strains lost both the ability to grow on spectinomycin at 10 micrograms/ml and the sequences that hybridize with the 8-kb probe DNA. The 1.7-kb Bg/II-SphI resistance fragment, when introduced via the vector pIJ702 into an S. achromogenes strain sensitive to 10 microgram of spectinomycin per ml, permitted its vigorous growth on 1,000 micrograms of the antibiotic per ml.  相似文献   

20.
Spirochetes of the genus Borrelia have double-stranded linear plasmids with covalently closed ends. The physical nature of the terminal connections was determined for the 16-kb linear plasmid of the B31 strain of the Lyme disease agent Borrelia burgdorferi. Native telomeric fragments representing the left and right ends of this plasmid were isolated and subjected to Maxam-Gilbert sequence analysis. At the plasmid ends the two DNA strands formed an uninterrupted, perfectly palindromic, AT-rich sequence. This Borrelia linear plasmid consisted of a continuous polynucleotide chain that is fully base paired except for short single-stranded hairpin loops at each end. The left and right telomeres of the 16-kb plasmid were identical for 16 of the first 19 nucleotide positions and constituted an inverted terminal repeat with respect to each other. The left telomere of the 49-kb plasmid of strain B31 was identical to the corresponding telomere of the 16-kb plasmid. Different-sized plasmids of other strains of B. burgdorferi also contained sequences homologous to the left end of the 16-kb plasmid. When the borrelia telomeres were compared with telomeric sequences of other linear double-stranded DNA replicons, sequence similarities were noted with poxviruses and particularly with the iridovirus agent of African swine fever. The latter virus and a Borrelia sp. share the same tick vector. These findings suggest that the novel linear plasmids of Borrelia originated through a horizontal genetic transfer across kingdoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号