首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang Y  Liu J  Zhao H  Lü W  Zhao J  Yang L  Li N  Du X  Ke Y 《Biochimica et biophysica acta》2007,1773(6):863-868
1A6/DRIM is a nucleolar protein with a nucleolar targeting sequence in its 3'-terminus. Bioinformatic analysis indicated that human 1A6/DRIM shares 23% identity and 43% similarity with yeast Utp20, which has been reported as a component of U3 snoRNA protein complex and has been implicated in 18S rRNA processing. In the present study, we found, by utilizing RT-PCR with RNA extracted from anti-1A6/DRIM immunoprecipitates and Northern blotting, that 1A6/DRIM is associated with U3 snoRNA. Pulse-chase labeling assays showed that silencing of 1A6/DRIM expression in HeLa cells resulted in a delayed 18S rRNA processing. Furthermore, immunoprecipitations revealed that 1A6/DRIM was also associated with fibrillarin, another U3 RNP component in HeLa cells. These results indicate that 1A6/DRIM is involved in 18S rRNA processing and is the bona fide mammalian Utp20.  相似文献   

3.
4.
Liu J  Du X  Ke Y 《FEBS letters》2006,580(5):1405-1410
Human 1A6/downregulated in metastasis (DRIM) is a nucleolar protein with multiple HEAT-repeat motifs (Huntington, elongation factor 3, a subunit of protein phosphatase 2A, target of rapamycin). The yeast homologue to 1A6/DRIM, Utp20, is part of the small subunit processome and functions in 18S RNA processing. In the present study, we utilized the green fluorescent protein as the fusion protein marker to investigate the sequence responsible for 1A6/DRIM accumulation in nucleolus. Deletion sequence analysis demonstrated that a single region located between amino acids 2744 and 2761 at the C-terminus of 1A6/DRIM is capable of nucleolar accumulation. Two basic amino acid clusters within this region are essential for nucleolar accumulation. The sequences required for nucleolar accumulation overlaps the putative nuclear localization signal of 1A6/DRIM.  相似文献   

5.
6.
7.
The exosome is a complex of 3'-5' exoribonucleases and RNA-binding proteins, which is involved in processing or degradation of different classes of RNA. Previously, the characterization of purified exosome complexes from yeast and human cells suggested that C1D and KIAA0052/hMtr4p are associated with the exosome and thus might regulate its functional activities. Subcellular localization experiments demonstrated that C1D and KIAA0052/hMtr4p co-localize with exosome subunit PM/Scl-100 in the nucleoli of HEp-2 cells. Additionally, the nucleolar accumulation of C1D appeared to be dependent on PM/Scl-100. Protein-protein interaction studies showed that C1D binds to PM/Scl-100, whereas KIAA0052/hMtr4p was found to interact with MPP6, a previously identified exosome-associated protein. Moreover, we demonstrate that C1D, MPP6 and PM/Scl-100 form a stable trimeric complex in vitro. Knock-down of C1D, MPP6 and KIAA0052/hMtr4p by RNAi resulted in the accumulation of 3'-extended 5.8S rRNA precursors, showing that these proteins are required for rRNA processing. Interestingly, C1D appeared to contain RNA-binding activity with a potential preference for structured RNAs. Taken together, our results are consistent with a role for the exosome-associated proteins C1D, MPP6 and KIAA052/hMtr4p in the recruitment of the exosome to pre-rRNA to mediate the 3' end processing of the 5.8S rRNA.  相似文献   

8.
9.
To identify neuron-specific genes, we performed gene expression profiling, cDNA microarray and in silico ESTs (expressed sequence tags) analyses. We identified a human neuron-specific gene, KIAA1110 (homologue of rat synArfGEF (Po)), that is a member of the guanine nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF). RT-PCR analysis showed that the KIAA1110 gene was expressed specifically in the brain among adult human tissues, whereas no apparent expression was observed in immature neural tissues/cells, such as fetal brain, glioma tissues/cells, and neural stem/precursor cells (NSPCs). The KIAA1110 protein was shown to be expressed in mature neurons but not in undifferentiated NSPCs. Immunohistochemical analysis also showed that KIAA1110 was expressed in neurons of the human adult cerebral cortex. Furthermore, the pull-down assay revealed that KIAA1110 has a GEF activity toward ARF1 that regulates transport along the secretion pathway. These results suggest that KIAA1110 is expressed specifically in mature neurons and may play an important role in the secretion pathway as a GEF for ARF1.  相似文献   

10.
We have been conducting a mouse cDNA project to predict protein-coding sequences of mouse homologues of human KIAA and FLJ genes since 2001. As an extension of these projects, we herein present the entire sequences of 500 mKIAA cDNA clones and 4 novel cDNA clones that were incidentally identified during this project. We have isolated cDNA clones from the size-fractionated mouse cDNA libraries derived from 7 tissues and 3 types of cultured cells. The average size of the 504 cDNA sequences reached 4.3 kb and that of the deduced amino acid sequences from these cDNAs was 807 amino acid residues. We assigned the integrity of CDSs from the comparison with the corresponding human KIAA cDNA sequences. The comparison of mouse and human sequences revealed that two different human KIAA cDNAs are derived from single genes. Furthermore, 3 out of 4 proteins encoded in the novel cDNA clones showed moderate sequence similarity with human KIAA proteins, thus we could obtain new members of KIAA protein families through our mouse cDNA projects.  相似文献   

11.
N6-methyladenosine (m6A) modification regulatory proteins are involved in the development of many types of cancer. KIAA1429 serves as a scaffold in bridging the catalytic core components of the m6A methyltransferase complex. The role of KIAA1429 in gastric cancer and its related mechanism has not been reported upon. The expression of KIAA1429 was detected in human gastric cancer tissues and cell lines by quantitative real-time polymerase chain reaction and western blot. The effects of KIAA1429 on gastric cancer proliferation were evaluated by cell counting kit assays, colony formation assays, flow cytometry assay, and in vivo experiments with nude mice. And messenger RNA (mRNA) high-throughput sequencing, RNA immunoprecipitation assay (RIP), luciferase assay, and a rescue experiment were used to identify the relationship between KIAA1429 and its specific targeted gene, c-Jun. We found that KIAA1429 was upregulated in gastric cancer tissues, and expressed lower in adjacent tissues. The upregulated KIAA1429 promoted proliferation and downregulated KIAA1429 was proved to inhibit proliferation of gastric cancer in vitro and in vivo. Then, we identified the potential KIAA1429 regulating gene as c-Jun by mRNAs high-throughput sequencing and RIP assay. By luciferase assay, we verified that KIAA1429 regulated the expression of c-Jun in an m6A-independent manner. Finally, the overexpression of c-Jun rescued the inhibition of proliferation caused by KIAA1429 knockdown in gastric cancer cells. KIAA1429 could act as an oncogene in gastric cancer by stabilizing c-Jun mRNA in an m6A-independent manner. This highlights the functional role for KIAA1429 as a potential prognostic biomarker and therapeutic target in gastric cancer.  相似文献   

12.
Large quantities of vitamin A are stored as retinyl esters (REs) in specialized liver cells, the hepatic stellate cells (HSCs). To date, the enzymes controlling RE degradation in HSCs are poorly understood. In this study, we identified KIAA1363 (also annotated as arylacetamide deacetylase 1 or neutral cholesterol ester hydrolase 1) as a novel RE hydrolase. We show that KIAA1363 is expressed in the liver, mainly in HSCs, and exhibits RE hydrolase activity at neutral pH. Accordingly, addition of the KIAA1363-specific inhibitor JW480 largely reduced RE hydrolase activity in lysates of cultured murine and human HSCs. Furthermore, cell fractionation experiments and confocal microscopy studies showed that KIAA1363 localizes to the endoplasmic reticulum. We demonstrate that overexpression of KIAA1363 in cells led to lower cellular RE content after a retinol loading period. Conversely, pharmacological inhibition or shRNA-mediated silencing of KIAA1363 expression in cultured murine and human HSCs attenuated RE degradation. Together, our data suggest that KIAA1363 affects vitamin A metabolism of HSCs by hydrolyzing REs at the endoplasmic reticulum, thereby counteracting retinol esterification and RE storage in lipid droplets.  相似文献   

13.
14.
15.
Recently we identified a novel 250 kDa protein in adipocytes that is a substrate for the insulin-activated protein kinase Akt. We refer to this protein as AS250 for Akt substrate of 250 kDa. AS250 has a predicted GTPase activating protein (GAP) domain at its carboxy terminus. This domain shows some homology to the GAP domains for Rheb at the carboxy terminus of the protein tuberin and for Rap1 in the protein Rap1 GAP. The present study further characterizes AS250. The cDNA sequence for human AS250 is reported, and the sites that undergo phosphorylation upon insulin treatment of adipocytes have been identified by tandem mass spectrometry. We have found that in adipocytes AS250 exists as a complex with a novel protein of 1484 amino acids known as KIAA1219. The complex of AS250 with KIAA1219 is notably similar to the important regulatory complex of the protein tuberin with hamartin (the tuberous sclerosis complex), in the size of its subunits, the location of the GAP domain, and its phosphorylation by Akt. In an effort to detect the cellular role of the AS250/KIAA1219 complex, we generated 3T3-L1 adipocytes that largely lack AS250 by shRNA knockdown and examined several insulin-dependent effects. The knockdown of AS250 had no effect on insulin activation of the kinases, Akt, 70 kDa S6 kinase, or ERK1/2, or on insulin-stimulated actin bundling, and it had only a slight effect on insulin-stimulated GLUT4 translocation.  相似文献   

16.
《Reproductive biology》2022,22(4):100681
Melatonin is a key neuroendocrine hormone that promotes spermatogenesis and sperm motility, but the underlying mechanisms remains poorly understood. In this study, we aimed to investigate the possible roles of m6A (N6--methyl-adenosine) in mediating melatonin-regulated spermatogonia activity alterations. In this study, mouse-derived GC-1 spermatogonia (spg) cell line was used as the in vitro cellular model. The viability, proliferation rates and apoptosis of spermatogonia were detected via CCK-8, Edu staining and flow cytometry respectively. Total m6A level was quantitated by dot blot, while mRNA and proteins contents in spermatogonia were measured by qRT-PCR and western blot respectively. Differentially expressed mRNAs were characterized by deep RNA sequencing method. Results showed that melatonin significantly promoted viability and proliferation rate while inhibited apoptosis in the GC-1 spg cells. The total m6A levels in GC-1 spg cells were also greatly increased by melatonin treatment, accompanied by remarkable expressional elevation of the m6A writer KIAA1429. Moreover, the regulation of GC-1 spg cell viability, proliferation and apoptosis by melatonin were greatly abrogated by KIAA1429 silencing but effectively strengthened by KIAA1429 overexpression. In addition, KIAA1429 overexpression regulates multiple biological process and signaling pathways in spermatogonia such as the PI3K/AKT signaling. The PI3K inhibitor LY294002 effectively mitigated the regulation of spermatogonia activity by KIAA1429 overexpression under melatonin treatment. Taken together, melatonin promotes spermatogonia activity via enhancing KIAA1429 expression and m6A RNA methylation to activate the downstream PI3K/AKT signaling pathway.  相似文献   

17.
We have been conducting a human cDNA project to predict protein-coding sequences in long cDNAs (> 4 kb) since 1994. The number of these newly identified human genes exceeds 2000 and these genes are known as KIAA genes. As an extension of this project, we herein report characterization of cDNAs derived from mouse KIAA-homologous genes. A primary aim of this study was to prepare a set of mouse. KIAA-homologous cDNAs that could be used to analyze the physiological roles of KIAA genes in mice. In addition, comparison of the structures of mouse and human KIAA cDNAs might enable us to evaluate the integrity of KIAA cDNAs more convincingly. In this study, we selected mouse KIAA-homologous cDNA clones to be sequenced by screening a library of terminal sequences of mouse cDNAs in size-fractionated libraries. We present the entire sequences of 100 cDNA clones thus selected and predict their protein-coding sequences. The average size of the 100 cDNA sequences reached 5.1 kb and that of mouse KIAA-homologous proteins predicted from these cDNAs was 989 amino acid residues.  相似文献   

18.
Jain M  Zhang L  Patterson EE  Kebebew E 《PloS one》2011,6(11):e26866

Background

KIAA0101 is a proliferating cell nuclear antigen-associated factor that is overexpressed in some human malignancies. Adrenocortical neoplasm is one of the most common human neoplasms for which the molecular causes are poorly understood. Moreover, it is difficult to distinguish between localized benign and malignant adrenocortical tumors. For these reasons, we studied the expression, function and possible mechanism of dysregulation of KIAA0101 in human adrenocortical neoplasm.

Methodology/Principal Findings

KIAA0101 mRNA and protein expression levels were determined in 112 adrenocortical tissue samples (21 normal adrenal cortex, 80 benign adrenocortical tumors, and 11 adrenocortical carcinoma (ACC). SiRNA knockdown was used to determine the functional role of KIAA0101 on cell proliferation, cell cycle, apoptosis, soft agar anchorage independent growth and invasion in the ACC cell line, NCI-H295R. In addition, we explored the mechanism of KIAA0101 dysregulation by examining the mutational status. KIAA0101 mRNA (9.7 fold) and protein expression were significantly higher in ACC (p<0.0001). KIAA0101 had sparse protein expression in only a few normal adrenal cortex samples, which was confined to adrenocortical progenitor cells. KIAA0101 expression levels were 84% accurate for distinguishing between ACC and normal and benign adrenocortical tumor samples. Knockdown of KIAA0101 gene expression significantly decreased anchorage independent growth by 80% and invasion by 60% (p = 0.001; p = 0.006). We found no mutations in KIAA0101 in ACC.

Conclusions/Significance

KIAA0101 is overexpressed in ACC. Our data supports that KIAA0101 is a marker of cellular proliferation, promotes growth and invasion, and is a good diagnostic marker for distinguishing benign from malignant adrenocortical neoplasm.  相似文献   

19.
20.
The Sry and Sox9 sex-determination factors initiate and promote testis differentiation by gene transactivation through similar promoter elements. However, knowledge is limited concerning what genes are regulated by Sry/Sox9 in the testis. Identification and characterization of Sry/Sox9-regulated genes are critical for understanding sexual differentiation. We now demonstrate that a novel human gene, KIAA0800, is preferentially expressed in the testis and is transactivated by Sox9. The KIAA0800 promoter is repressed by an upstream element involving a polyT track and two Alu repeats. Two specific Sox9-bindings sites have been identified in the KIAA0800 promoter by using DNaseI footprinting assays and gel electrophoretic mobility shift assays. Sox9 transactivation of the KIAA0800 promoter appears to be exerted mainly through the relief of promoter repression. Genes homologous to the human KIAA0800 exist in organisms with differentiated sex tissues including mouse, Drosophila, and C. elegans, but not in unicellular organisms, including yeast and bacteria. Further, our recent sequence analysis shows that KIAA0800 protein is 97% identical between human and mouse. Thus, KIAA0800 is a novel Sox9-activated gene that is evolutionarily conserved and potentially involved in sexual differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号