首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sulfate-reducing bacteria, which also reduce arsenate, were isolated; both organisms oxidized lactate incompletely to acetate. When using lactate as the electron donor, one of these organisms, Desulfomicrobium strain Ben-RB, rapidly reduced (doubling time = 8 h) 5.1 mM arsenate at the same time it reduced sulfate (9.6 mM). Sulfate reduction was not inhibited by the presence of arsenate. Arsenate could act as the terminal electron acceptor in minimal medium (doubling time = 9 h) in the absence of sulfate. Arsenate was reduced by a membrane-bound enzyme that is either a c-type cytochrome or is associated with such a cytochrome; benzyl-viologen-dependent arsenate reductase activity was greater in cells grown with arsenate/sulfate than in cells grown with sulfate only. The second organism, Desulfovibrio strain Ben-RA, also grew (doubling time = 8 h) while reducing arsenate (3.1 mM) and sulfate (8.3 mM) concomitantly. No evidence was found, however, that this organism is able to grow using arsenate as the terminal electron acceptor. Instead, it appears that arsenate reduction by the Desulfovibrio strain Ben-RA is catalyzed by an arsenate reductase that is encoded by a chromosomally-borne gene shown to be homologous to the arsC gene of the Escherichia coli plasmid, R773 ars system. Received: 18 March 1999 / Accepted: 27 September 1999  相似文献   

2.
The selenate-respiring bacterial strain SES-3 was able to use a variety of inorganic electron acceptors to sustain growth. SES-3 grew with the reduction of arsenate to arsenite, Fe(III) to Fe(II), or thiosulfate to sulfide. It also grew in medium in which elemental sulfur, Mn(IV), nitrite, trimethylamine N-oxide, or fumarate was provided as an electron acceptor. Growth on oxygen was microaerophilic. There was no growth with arsenite or chromate. Washed suspensions of cells grown on selenate or nitrate had a constitutive ability to reduce arsenate but were unable to reduce arsenite. These results suggest that strain SES-3 may occupy a niche as an environmental opportunist by being able to take advantage of a diversity of electron acceptors.  相似文献   

3.
A Gram-negative anaerobic bacterium, Citrobacter sp. NC-1, was isolated from soil contaminated with arsenic at levels as high as 5,000 mg As kg−1. Strain NC-1 completely reduced 20 mM arsenate within 24 h and exhibited arsenate-reducing activity at concentrations as high as 60 mM. These results indicate that strain NC-1 is superior to other dissimilatory arsenate-reducing bacteria with respect to arsenate reduction, particularly at high concentrations. Strain NC-1 was also able to effectively extract arsenic from contaminated soils via the reduction of solid-phase arsenate to arsenite, which is much less adsorptive than arsenate. To characterize the reductase systems in strain NC-1, arsenate and nitrate reduction activities were investigated using washed-cell suspensions and crude cell extracts from cells grown on arsenate or nitrate. These reductase activities were induced individually by the two electron acceptors. This may be advantageous during bioremediation processes in which both contaminants are present.  相似文献   

4.
A strictly anaerobic bacterium, strain OX39, was isolated with o-xylene as organic substrate and sulfate as electron acceptor from an aquifer at a former gasworks plant contaminated with aromatic hydrocarbons. Apart from o-xylene, strain OX39 grew on m-xylene and toluene and all three substrates were oxidized completely to CO2. Induction experiments indicated that o-xylene, m-xylene, and toluene degradation were initiated by different specific enzymes. Methylbenzylsuccinate was identified in supernatants of cultures grown on o-xylene and m-xylene, and benzylsuccinate was detected in supernatants of toluene-grown cells, thus indicating that degradation was initiated in all three cases by fumarate addition to the methyl group. Strain OX39 was sensitive towards sulfide and depended on Fe(II) in the medium as a scavenger of the produced sulfide. Analysis of the PCR-amplified 16S rRNA gene revealed that strain OX39 affiliates with the gram-positive endospore-forming sulfate reducers of the genus Desulfotomaculum and is the first hydrocarbon-oxidizing bacterium in this genus.  相似文献   

5.
A new thermophilic sulfate-reducing bacterium, strain TSB, that was spore-forming, rod-shaped, slightly motile and gram-positive, was isolated from a butyrate-containing enrichment culture inoculated with sludge of a thermophilic methane fermentation reactor. This isolate could oxidize benzoate completely. Strain TSB also oxidized some fatty acids and alcohols. SO inf4 sup2- , SO inf3 sup2- , S2O inf3 sup2- and NO inf3 sup- were utilized as electron acceptors. With pyruvate or lactate the isolate grew without an external electron acceptor and produced acetate. The optimum temperature for growth was 62°C. The G+C content of DNA was 52.8 mol%. This isolate is described as a new species, Desulfotomaculum thermobenzoicum.  相似文献   

6.
A new type of sulfate-reducing bacteria with ellipsoidal to lemon-shaped cells was regularly enriched from anaerobic freshwater and marine mud samples when mineral media with propionate and sulfate were used. Three strains (1pr3, 2pr4, 3pr10) were isolated in pure culture. Propionate, lactate and alcohols were used as electron donors and carbon sources. Growth on H2 required acetate as a carbon source in the presence of CO2. Stoichiometric measurements revealed that oxidation of propionate was incomplete and led to acetate as an endproduct. Instead of sulfate, strain 1pr3 was shown to reduce sulfite and thiosulfate to H2S; nitrate also served as electron acceptor and was reduced to ammonia. With lactate or pyruvate, all three strains were able to grow without external electron acceptor and formed propionate and acetate as fermentation products. None of the strains contained desulfoviridin. In strain 1pr3 cytochromes of the b- and c-type were identified. Strain 1pr3 is described as type strain of the new species and genus, Desulfobulbus propionicus.  相似文献   

7.
A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAl-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAl-1 differs from all other described bacteria, and represents the type strain of a new genus and species, Geovibrio ferrireducens. Received: 26 September 1995 / Accepted: 28 February 1996  相似文献   

8.
From an anaerobic enrichment culture with vanillate as substrate, a catechol-degrading lemon-shaped nonsporing sulfate-reducing bacterium, strain NZva20, was isolated in pure culture. Growth occurred in defined, bicarbonate-buffered, sulfide-reduced freshwater medium with catechol as sole electron donor and carbon source. Catechol was completely oxidized to CO2 with an average growth yield of 31 g cell dry mass per mol of catechol, corresponding to 9.5 g cell dry mass per mol of sulfate reduced. Further substrates utilized as electron donors and carbon sources were resorcinol, hydroquinone, benzoate and several other aromatic compounds, hydrogen plus carbon dioxide, formate, lactate, pyruvate, alcohols including methanol, dicarboxylic acids, acetate, propionate and higher fatty acids up to 18 carbon atoms. Instead of sulfate, sulfite, thiosulfate, dithionite or nitrate served as electron acceptors. Nitrate was reduced to ammonium. Strain NZva20 is the first bacterium in which the complete oxidation of organic substrates is linked to the ammonification of nitrate. Elemental sulfur was not utilized as electron acceptor. In the absence of an electron acceptor slow growth occurred on pyruvate or fumarate. The G+C content of the DNA of strain NZva20 was 52.4 mol%. Cytochromes were present. Desulfoviridin could not be detected. Strain NZva20 is described as type strain of a new species, Desulfobacterium catecholicum sp. nov.Affectionately dedicated to Professor Ralph S. Wolfe on the occassion of his 65th birthday  相似文献   

9.
Anoxic bottom water from Mono Lake, California, can biologically reduce added arsenate without any addition of electron donors. Of the possible in situ inorganic electron donors present, only sulfide was sufficiently abundant to drive this reaction. We tested the ability of sulfide to serve as an electron donor for arsenate reduction in experiments with lake water. Reduction of arsenate to arsenite occurred simultaneously with the removal of sulfide. No loss of sulfide occurred in controls without arsenate or in sterilized samples containing both arsenate and sulfide. The rate of arsenate reduction in lake water was dependent on the amount of available arsenate. We enriched for a bacterium that could achieve growth with sulfide and arsenate in a defined, mineral medium and purified it by serial dilution. The isolate, strain MLMS-1, is a gram-negative, motile curved rod that grows by oxidizing sulfide to sulfate while reducing arsenate to arsenite. Chemoautotrophy was confirmed by the incorporation of H14CO3 into dark-incubated cells, but preliminary gene probing tests with primers for ribulose-1,5-biphosphate carboxylase/oxygenase did not yield PCR-amplified products. Alignment of 16S rRNA sequences indicated that strain MLMS-1 was in the δ-Proteobacteria, located near sulfate reducers like Desulfobulbus sp. (88 to 90% similarity) but more closely related (97%) to unidentified sequences amplified previously from Mono Lake. However, strain MLMS-1 does not grow with sulfate as its electron acceptor.  相似文献   

10.
The biological reduction of soluble U(VI) to the less soluble U(IV) has been proposed as a strategy to remediate uranium-contaminated sites. However, the majority of the contaminated sites contain, in addition to U(VI), competing electron acceptors (CEAs) that can either enhance or inhibit U(VI) reduction. Desulfotomaculum reducens MI-1 is a sulfate-reducing bacterium able to reduce a variety of electron acceptors including U(VI). We characterized U(VI) reduction by D. reducens in the presence of pyruvate and three CEAs: sulfate, nitrate or soluble ferric iron. In the presence of sulfate or ferric iron and U(VI), cell growth was driven by respiration of the CEA. Nitrate was not used as an electron acceptor for growth and vegetative cells grew instead by fermenting pyruvate. Sulfate remaining after sulfate reduction has ceased or the presence of nitrate did not affect U(VI) reduction. However, in the case of sulfate, the addition of H2 after the depletion of pyruvate greatly enhanced U(VI) reduction. Contrary to sulfate and nitrate, the presence of Fe(II), the product of Fe(III) reduction, abolished U(VI) reduction. The results from this investigation suggest that this microorganism and others with similar characteristics may play a role in U(VI) bioremediation efforts but only after the soluble Fe(II) produced by Fe(III) reduction has been advected away.  相似文献   

11.
A strictly anaerobic, thermophilic, fatty acids-degrading, sporulating sulfate-reducing bacterium was isolated from geothermal ground water. The organism stained Gram-negative and formed gas vacuoles during sporulation. Lactate, ethanol, fructose and saturated fatty acids up to C18 served as electron donors and carbon sources with sulfate as external electron acceptor. Benzoate was not used. Stoichiometric measurements revealed a complete oxidation of part of butyrate although growth with acetate as only electron donor was not observed. The rest of butyrate was oxidized to acetate. The strain grew chemolithoautotrophically with hydrogen plus sulfate as energy source and carbon dioxide as carbon source without requirement of additional organic carbon like acetate. The strain contained a c-type cytochrome and presumably a sulfite reductase P582. Optimum temperature, pH and NaCl concentration for growth were 54°C, pH 7.3–7.5 and 25 to 35 g NaCl/l. The G+C content of DNA was 50.4 mol %. Strain BSD is proposed as a new species of the spore-forming sulfate-reducing genus Desulfotomaculum, D. geothermicum.  相似文献   

12.
A novel arsenate-reducing bacterium, designated strain PSR-1, was isolated from arsenic-contaminated soil. Strain PSR-1 was phylogenetically closely related to Anaeromyxobacter dehalogenans 2CP-1T with 16S rRNA gene similarity of 99.7% and coupled the oxidation of acetate with the reduction of arsenate. Arsenate reduction was inhibited almost completely by respiratory inhibitors such as dicumarol and 2-heptyl-4-hydroxyquinoline N-oxide. Strain PSR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, oxygen, and fumarate as electron acceptors. Strain PSR-1 catalyzed the release of arsenic from arsenate-adsorbed ferrihydrite. In addition, inoculation of washed cells of strain PSR-1 into sterilized soil successfully reproduced arsenic release. Arsenic K-edge X-ray absorption near-edge structure (XANES) analysis revealed that the proportion of arsenite in the soil solid phase actually increased from 20% to 50% during incubation with washed cells of strain PSR-1. These results suggest that strain PSR-1 is capable of reducing not only dissolved arsenate but also arsenate adsorbed on the soil mineral phase. Arsenate reduction by strain PSR-1 expands the metabolic versatility of Anaeromyxobacter dehalogenans. Considering its distribution throughout diverse soils and anoxic sediments, Anaeromyxobacter dehalogenans may play a role in arsenic release from these environments.  相似文献   

13.
The ability of anaerobic prokaryotes to employ different terminal electron acceptors for respiration enables these organisms to flourish in subsurface ecosystems. Desulfurispirillum indicum strain S5 is an obligate anaerobic bacterium that is able to grow by respiring a range of different electron acceptors, including arsenate and nitrate. Here, we examined the growth, electron acceptor utilization, and gene expression of D. indicum growing under arsenate and nitrate-reducing conditions. Consistent with thermodynamic predictions, the experimental results showed that the reduction of nitrate to ammonium yielded higher cell densities than the reduction of arsenate to arsenite. However, D. indicum grew considerably faster by respiration on arsenate compared with nitrate, with doubling times of 4.3 ± 0.2 h and 19.2 ± 2.0 h, respectively. Desulfurispirillum indicum growing on both electron acceptors exhibited the preferential utilization of arsenate before nitrate. The expression of the arsenate reductase gene arrA was up-regulated approximately 100-fold during arsenate reduction, as determined by qRT-PCR. Conversely, the nitrate reductase genes narG and napA were not differentially regulated under the conditions tested. The results of this study suggest that physiology, rather than thermodynamics, controls the growth rates and hierarchy of electron acceptor utilization in D. indicum.  相似文献   

14.
A novel denitrifying bacterium, strain 72Chol, was enriched and isolated under strictly anoxic conditions on cholesterol as sole electron donor and carbon source. Strain 72Chol grew on cholesterol with oxygen or nitrate as electron acceptor. Strictly anaerobic growth in the absence of oxygen was demonstrated using chemically reduced culture media. During anaerobic growth, nitrate was initially reduced to nitrite. At low nitrate concentrations, nitrite was further reduced to nitrogen gas. Ammonia was assimilated. The degradation balance measured in cholesterol-limited cultures and the amounts of carbon dioxide, nitrite, and nitrogen gas formed during the microbial process indicated a complete oxidation of cholesterol to carbon dioxide. A phylogenetic comparison based on total 16S rDNA sequence analysis indicated that the isolated micro-organism, strain 72Chol, belongs to the β2-subgroup in the Proteobacteria and is related to Rhodocyclus, Thauera, and Azoarcus species. Received: 16 July 1996 / Accepted: 5 December 1996  相似文献   

15.
A new type of gas-vacuolated, sulfate-reducing bacterium was isolated at 10° C from reduced mud (E0 < 0) obtained from a temperate estuary with thiosulfate and lactate as substrates. The strain was moderately psychrophilic with optimum growth at 18–19° C and a maximum growth temperature of 24° C. Propionate, lactate, and alcohols served as electron donors and carbon sources. The organism grew heterotrophically only with hydrogen as electron donor. Propionate and lactate were incompletely oxidized to acetate; traces of lactate were fermented to propionate, CO2, and possibly acetate in the presence of sulfate. Pyruvate was utilized both with and without an electron acceptor present. The strain did not contain desulfoviridin. The G+C content was 48.4 mol%. The differences in the 16S rRNA sequence of the isolate compared with that of its closest phylogenetic neighbors, bacteria of the genus Desulfobulbus, support the assignment of the isolate to a new genus. The isolate is described as the type strain of the new species and genus, Desulforhopalus vacuolatus. Received: 4 March 1996 / Accepted: 17 June 1996  相似文献   

16.
In an investigation on the oxygen tolerance of sulfate-reducing bacteria, a strain was isolated from a 107-fold dilution of the upper 3-mm layer of a hypersaline cyanobacterial mat (transferred from Solar Lake, Sinai). The isolate, designated P1B, appeared to be well-adapted to the varying concentrations of oxygen and sulfide that occur in this environment. In the presence of oxygen strain P1B respired aerobically with the highest rates [260 nmol O2 min–1 (mg protein)–1] found so far among marine sulfate-reducing bacteria. Besides H2 and lactate, even sulfide or sulfite could be oxidized with oxygen. The sulfur compounds were completely oxidized to sulfate. Under anoxic conditions, it grew with sulfate, sulfite, or thiosulfate as the electron acceptor using H2, lactate, pyruvate, ethanol, propanol, or butanol as the electron donor. Furthermore, in the absence of electron donors the isolate grew by disproportionation of sulfite or thiosulfate to sulfate and sulfide. The highest respiration rates with oxygen were obtained with H2 at low oxygen concentrations. Aerobic growth of homogeneous suspensions was not obtained. Additions of 1% oxygen to the gas phase of a continuous culture resulted in the formation of cell clumps wherein the cells remained viable for at least 200 h. It is concluded that strain P1B is oxygen-tolerant but does not carry out sulfate reduction in the presence of oxygen under the conditions tested. Analysis of the 16S rDNA sequence indicated that strain P1B belongs to the genus Desulfovibrio, with Desulfovibrio halophilus as its closest relative. Based on physiological properties strain P1B could not be assigned to this species. Therefore, a new species, Desulfovibrio oxyclinae, is proposed. Received: 7 August 1996 / Accepted: 29 January 1997  相似文献   

17.
Aeromonas hydrophila ATCC 7966 grew anaerobically on glycerol with nitrate, fumarate, Fe(III), Co(III), or Se(VI) as the sole terminal electron acceptor, but did not ferment glycerol. Final cell yields were directly proportional to the amount of terminal electron acceptor provided. Twenty-four estuarine mesophilic aeromonads were isolated; all reduced nitrate, Fe(III), or Co(III), and five strains reduced Se(VI). Dissimilatory Fe(III) reduction by A. hydrophila may involve cytochromes. Difference spectra obtained with whole cells showed absorption maxima at wavelengths characteristic of c-type cytochromes (419, 522, and 553 nm). Hydrogen-reduced cytochromes within intact cells were oxidized by the addition of Fe(III) or nitrate. Studies with respiratory inhibitors yielded results consistent with a respiratory chain involving succinate (flavin-containing) dehydrogenase, quinones and cytochromes, and a single Fe(III) reductase. Neither anaerobic respiration nor dissimilatory metal reduction by members of the genus Aeromonas have been reported previously. Received: 24 June 1997 / Accepted: 20 October 1997  相似文献   

18.
A new sulfate-reducing bacterium was enriched and isolated from marine sediment with phenol as sole electron donor and carbon source. Strain Ph01 grew well in defined media without growth factors. Further aromatic compounds oxidized by strain Ph01 were benzoate, phenylacetate, 2-hydroxybenzoate, 4-hydroxybenzoate, 4-hydroxyphenylacetate, p-cresol, indole, anthranilic acid, and phenylalanine. Various fatty acids, alcohols and dicarboxylic acids were also utilized by strain Ph01. Sulfate and thiosulfate served as electron acceptors and were reduced to H2S. Stoichiometric measurements with strain Ph01 showed complete oxidation of phenol to CO2. Cytochromes and menaquinone MK-7(H2) were present; desulfoviridin could not be detected. Strain Ph01 is described as type strain of the new species Desulfobacterium phenolicum.In further marine enrichments with 4-hydroxybenzoate, 4-hydroxyphenylacetate, p-cresol or o-cresol as substrates and sulfate as electron acceptor a variety of morphologically different sulfate-reducing bacteria developed. However, since the new isolate strain Ph01 was able to degrade all these aromatic compounds (except o-cresol) no further studies with the enrichment cultures were carried out.  相似文献   

19.
A strain (ToHP1) of anaerobic bacteria which degrades 3-hydroxypropanoate was isolated in pure culture from the sludge of an anaerobic digestor at a Tokyo sewage treatment facility. The strain grew by degrading 3-hydroxypropanoate, lactate, and pyruvate to propionate and acetate. It also grew auxotrophically by degrading 2-hydroxybutanoate to butyrate and propionate in the presence of acetate. Cells were lemon-shaped rods; 1.4 to 3.6 μm in length and 0.5 to 1.1 μm in width. Spores with a diameter of 0.8 to 1.1 μm were formed subterminally. The strain occurred singly or in pairs. It stained gram-positive. The strain grew optimally at 30 to 35°C and ca. pH 7.2. It required yeast extract for growth. The strain did not utilize nitrate, sulfate, sulfite, thiosulfate, or elemental sulfur as an electron acceptor. The guanine plus cytosine content of the DNA was 43 mol%. Strain ToHP1 was identified as a member of the genus Clostridium.  相似文献   

20.
Two of nine sulfate reducing bacteria tested,Desulfobulbus propionicus andDesulfovibrio desulfuricans (strain Essex 6), were able to grow with nitrate as terminal electron acceptor, which was reduced to ammonia. Desulfovibrio desulfuricans was grown in chemostat culture with hydrogen plus limiting concentrations of nitrate, nitrite or sulfate as sole energy source. Growth yields up to 13.1, 8.8 or 9.7 g cell dry mass were obtained per mol nitrate, nitrite or sulfate reduced, respectively. The apparent half saturation constants (K s) were below the detection limits of 200, 3 or 100 mol/l for nitrate, nitrite of sulfate, respectively. The maximum growth rates {ie63-1} raised from 0.124 h-1 with sulfate and 0.150 h-1 with nitrate to 0.193 h-1 with nitrite as electron acceptor. Regardless of the electron acceptor in the culture medium, cell extracts exhibited absorption maxima corresponding to cytochromec and desulfoviridin. Nitrate reductase was found to be inducible by nitrate or nitrite, whereas nitrite reductase was synthesized constitutively. The activities of nitrate and nitrite reductases with hydrogen as electron donor were 0.2 and 0.3 mol/min·mg protein, respectively. If limiting amounts of hydrogen were added to culture bottles with nitrate as electron acceptor, part of the nitrate was only reduced to the level of nitrite. In media containing nitrate plus sulfate or nitrite plus sulfate, sulfate reduction was suppressed.The results demonstrate that the ammonification of nitrate or nitrite can function as sole energy conserving process in some sulfate-reducing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号