首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lanthanides such as La3+ and Gd3+ are well known to have large effects on the function of membrane proteins such as mechanosensitive ionic channels and voltage-gated sodium channels, and also on the structure of phospholipid membranes. In this report, we have investigated effects of La3+ and Gd3+ on the shape of giant unilamellar vesicle (GUV) of dioleoylphosphatidylcholine (DOPC-GUV) and GUV of DOPC/cholesterol by the phase-contrast microscopy. The addition of 10-100 μM La3+ (or Gd3+) through a 10-μm diameter micropipette near the DOPC-GUV (or DOPC/cholesterol-GUV) triggered several kinds of shape changes. We have found that a very low concentration (10 μM) of La3+ (or Gd3+) induced a shape change of GUV such as the discocyte via stomatocyte to inside budded shape transformation, the two-spheres connected by a neck to prolate transformation, and the pearl on a string to cylinder (or tube) transformation. To understand the effect of these lanthanides on the shape of the GUV, we have also investigated phase transitions of 30 μM dipalmitoylphosphatidylcholine-multilamellar vesicle (DPPC-MLV) by the ultra-sensitive differential scanning calorimetry (DSC). The chain-melting phase transition temperature and the Lβ′ to Pβ′ phase transition temperature of DPPC-MLV increased with an increase in La3+ concentration. This result indicates that the lateral compression pressure of the membrane increases with an increase in La3+ concentration. Thereby, the interaction of La3+ (or Gd3+) on the external monolayer membrane of the GUV induces a decrease in its area (Aex), whereas the area of the internal monolayer membrane (Ain) keeps constant. Therefore, the shape changes of the GUV induced by these lanthanides can be explained reasonably by the decrease in the area difference between two monolayers (ΔA=AexAin).  相似文献   

2.
We characterized the recently introduced environment-sensitive fluorescent membrane probe based on 3-hydroxyflavone, F2N12S, in model lipid membranes displaying liquid disordered (Ld) phase, liquid ordered (Lo) phase, or their coexistence. Steady-state fluorescence studies in large unilamellar vesicles show that the probe dual emission drastically changes with the lipid bilayer phase, which can be correlated with the difference in their hydration. Using two-photon excitation microscopy on giant unilamellar vesicles, the F2N12S probe was found to bind both Ld and Lo phases, allowing visualization of the individual phases from the fluorescence intensity ratio of its two emission bands. By using a linearly polarized excitation light, a strong photoselection was observed for F2N12S in the Lo phase, indicating that its fluorophore is nearly parallel to the lipid chains of the bilayer. In contrast, the absence of the photoselection with the Ld phase indicated no predominant orientation of the probe in the Ld phase. Comparison of the present results with those reported previously for F2N12S in living cells suggests a high content of the Lo phase in the outer leaflet of the cell plasma membranes. Taking into account the high selectivity of F2N12S for the cell plasma membranes and its suitability for both single- and two-photon excitation, applications of this probe to study membrane lateral heterogeneity in biological membranes are foreseen.  相似文献   

3.
We assayed fusion events between giant unilamellar vesicles (GUVs) and budded viruses (BVs) of baculovirus (Autographa californica nucleopolyhedrovirus), the envelopes of which have been labeled with the fluorescent dye Alexa Fluor 488. This involves observing the intensity of fluorescence emitted from the lipid bilayer of single GUVs after fusion using laser scanning microscopy. Using this assay system, we found that fusion between single GUVs and BV envelopes was significantly enhanced at around pH 5.0-6.0, which suggests that: (1) envelope glycoprotein GP64-mediated membrane fusion within the endosome of insect cells was reproduced in our artificial system; (2) acidic phospholipids in GUVs are necessary for this fusion, which are in agreement with the previous results with conventional small liposomes including large unilamellar vesicles and multilamellar vesicles; and (3) the efficiency of fusion is significantly affected by membrane properties that can be modulated by adding cholesterol to GUV lipid bilayers. In addition, the microscopic observation of BV-fused single GUVs showed that a weak interaction occurred between BVs and GUVs containing dioleoylphosphatidylserine at pH 6.0-6.5, and components of BV envelopes were unevenly distributed upon fusion with GUVs containing saturated phospholipid with cholesterol. We further demonstrated that when the recombinant membrane protein, adrenergic β2 receptor, was expressed on recombinant BV envelopes, the protein distribution on BV-fused GUVs was also affected by their lipid contents.  相似文献   

4.
Changes in the fluorescence of partially self-quenched 5(6)-carboxyfluorescein trapped within the internal aqueous compartment of small unilamellar dipalmitoylphosphatidylcholine vesicles indicate that the trapped volume of these vesicles decreases when the phospholipid undergoes the liquid crystalline to gel state transition. This volume change is completely reversible and is not caused by vesicle-vesicle fusion. Furthermore, this decrease in volume of the internal aqueous compartment may be attributed to a change in vesicle shape upon undergoing the phase transition.  相似文献   

5.
Femtosecond-pulsed laser irradiation was found to initiate giant plasma membrane vesicle (GPMV) formation on individual cells. Laser-induced GPMV formation resulted from intracellular cavitation and did not require the addition of chemical stressors to the cellular environment. The viscosity, structure, and contents of laser-induced GPMVs were measured with fluorescence microscopy and single-particle tracking. These GPMVs exhibit the following properties: (1) GPMVs grow fastest immediately after laser irradiation; (2) GPMVs contain barriers to free diffusion of incorporated fluorescent beads; (3) materials from both the cytoplasm and surrounding media flow into the growing GPMVs; (4) the GPMVs are surrounded by phospholipids, including phosphatidylserine; (5) F-actin is incorporated into the vesicles; and (6) caspase activity is not essential for GPMV formation. The effective viscosity of 65 nm polystyrene nanoparticles within GPMVs ranged from 32 to 434 cP. The nanoparticle diffusion was commonly affected by relatively large, macromolecular structures within the bleb.  相似文献   

6.
We report a novel analytical procedure to measure the surface areas of coexisting lipid domains in giant unilamellar vesicles (GUVs) based on image processing of 3D fluorescence microscopy data. The procedure involves the segmentation of lipid domains from fluorescent image stacks and reconstruction of 3D domain morphology using active surface models. This method permits the reconstruction of the spherical surface of GUVs and determination of the area fractions of coexisting lipid domains at the level of single vesicles. Obtaining area fractions enables the scrutiny of the lever rule along lipid phase diagram's tie lines and to test whether or not the coexistence of lipid domains in GUVs correspond to equilibrium thermodynamic phases. The analysis was applied to DLPC/DPPC GUVs displaying coexistence of lipid domains. Our results confirm the lever rule, demonstrating that the observed membrane domains correspond to equilibrium thermodynamic phases (i.e., solid ordered and liquid disordered phases). In addition, the fact that the lever rule is validated from 11 to 14 randomly selected GUVs per molar fraction indicates homogeneity in the lipid composition among the explored GUV populations. In conclusion, our study shows that GUVs are reliable model systems to perform equilibrium thermodynamic studies of membranes.  相似文献   

7.
GUVs have been widely used for studies on lipid mobility, membrane dynamics and lipid domain (raft) formation, using single molecule techniques like fluorescence correlation spectroscopy. Reports on membrane protein dynamics in these types of model membranes are by far less advanced due to the difficulty of incorporating proteins into GUVs in a functional state. We have used sucrose to prevent four distinct membrane protein(s) (complexes) from inactivating during the dehydration step of the GUV-formation process. The amount of sucrose was optimized such that the proteins retained 100% biological activity, and many proteo-GUVs were obtained. Although GUVs could be formed by hydration of lipid mixtures composed of neutral and anionic lipids, an alternate current electric field was required for GUV formation from neutral lipids. Distribution, lateral mobility, and function of an ATP-binding cassette transport system, an ion-linked transporter, and a mechanosensitive channel in GUVs were determined by confocal imaging, fluorescence correlation spectroscopy, patch-clamp measurements, and biochemical techniques. In addition, we show that sucrose slows down the lateral mobility of fluorescent lipid analogs, possibly due to hydrogen-bonding with the lipid headgroups, leading to larger complexes with reduced mobility.  相似文献   

8.
Liquid-ordered (Lo) and liquid-disordered (Ld) phase coexistence has been suggested to partition the plasma membrane of biological cells into lateral compartments, allowing for enrichment or depletion of functionally relevant molecules. This dynamic partitioning might be involved in fine-tuning cellular signaling fidelity through coupling to the plasma membrane protein and lipid composition. In earlier work, giant plasma membrane vesicles, obtained by chemically induced blebbing from cultured cells, were observed to reversibly phase segregate at temperatures significantly below 37 °C. In this contribution, we compare the temperature dependence of fluid phase segregation in HeLa and rat basophilic leukemia (RBL) cells. We find an essentially monotonic temperature dependence of the number of phase-separated vesicles in both cell types. We also observe a strikingly broad distribution of phase transition temperatures in both cell types. The binding of peripheral proteins, such as cholera toxin subunit B (CTB), as well as Annexin V, is observed to modulate phase transition temperatures, indicating that peripheral protein binding may be a regulator for lateral heterogeneity in vivo. The partitioning of numerous signal protein anchors and full length proteins is investigated. We find Lo phase partitioning for several proteins assumed in the literature to be membrane raft associated, but observe deviations from this expectation for other proteins, including caveolin-1.  相似文献   

9.
Microfluidic technology – the manipulation of fluids at micrometer scales – has revolutionized many areas of synthetic biology. The bottom‐up synthesis of “minimal” cell models has traditionally suffered from poor control of assembly conditions. Giant unilamellar vesicles (GUVs) are good models of living cells on account of their size and unilamellar membrane structure. In recent years, a number of microfluidic approaches for constructing GUVs has emerged. These provide control over traditionally elusive parameters of vesicular structure, such as size, lamellarity, membrane composition, and internal contents. They also address sophisticated cellular functions such as division and protein synthesis. Microfluidic techniques for GUV synthesis can broadly be categorized as continuous‐flow based approaches and droplet‐based approaches. This review presents the state‐of‐the‐art of microfluidic technology, a robust platform for recapitulating complex cellular structure and function in synthetic models of biological cells.  相似文献   

10.
We report a new and improved method to prepare, by gentle hydration of lipid films, oil-free giant unilamellar vesicles (GUVs), in which enzymatic reactions can be encapsulated. The traditional method of gentle hydration requires very low concentrations of metal ions, whereas enzymatic reactions generally require mono- and divalent metal ions at physiological concentrations. In order to improve the production of oil-free GUVs that can confine enzymatic reactions, we developed a novel method also based on gentle hydration, but in which the precursor lipid film was doped with both 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PEGylated lipid) and sugar. Close examination of the size, shape, and lamellarity of vesicles prepared in this manner demonstrated that the process improves the production of oil-free GUVs even at low temperatures and physiological salt concentrations. PEGylated lipid and sugar were found to synergistically improve GUV formation. Finally, we demonstrate the successful enzymatic synthesis of RNA within oil-free GUVs that were prepared on ice.  相似文献   

11.
In this work, we have investigated a new and general method for the reconstitution of membrane proteins into giant unilamellar vesicles (GUVs). We have analyzed systematically the reconstitution of two radically different membrane proteins, the sarcoplasmic reticulum Ca(2+)-ATPase and the H(+) pump bacteriorhodopsin. In a first step, our method involved a detergent-mediated reconstitution of solubilized membrane proteins into proteoliposomes of 0.1-0.2 microm in size. In a second step, these preformed proteoliposomes were partially dried under controlled humidity followed, in a third step, by electroswelling of the partially dried film to give GUVs. The physical characteristics of GUVs were analyzed in terms of morphology, size, and lamellarity using phase-contrast and differential interference contrast microscopy. The reconstitution process was further characterized by analyzing protein incorporation and biological activity. Both membrane proteins could be homogeneously incorporated into GUVs at lipid/protein ratios ranging from 5 to 40 (w/w). After reconstitution, both proteins retained their biological activity as demonstrated by H(+) or Ca(2+) pumping driven by bacteriorhodopsin or Ca(2+)-ATPase, respectively. This constitutes an efficient new method of reconstitution, leading to the production of large unilamellar membrane protein-containing vesicles of more than 20 microm in diameter, which should prove useful for functional and structural studies through the use of optical microscopy, optical tweezers, microelectrodes, or atomic force microscopy.  相似文献   

12.
Giant Unilamellar Vesicles (GUVs) provide a key model membrane system to study lipid-lipid and lipid-protein interactions, which are relevant to vital cellular processes, by (single-molecule) optical microscopy. Here, we review the work on reconstitution techniques for membrane proteins and other preparation methods for developing GUVs towards most suitable close-to-native membrane systems. Next, we present a few applications of protein-containing GUVs to study domain assembly and protein partitioning into raft-like domains.  相似文献   

13.
The ability of membrane components to arrange themselves heterogeneously within the bilayer induces the formation of microdomains. Much work has been devoted to mimicking domain-assembly in artificial bilayers and characterizing their physico-chemical properties. Ternary lipid mixtures composed of unsaturated phospholipids, sphingomyelin and cholesterol give rise to large, round domains. Here, we replaced the unsaturated phospholipid in the ternary mixture with sphingomyelin and cholesterol by saturated glycero-phospholipids of different chain length and characterized the critical role of cholesterol in sorting these lipids by confocal imaging and fluorescence correlation spectroscopy (FCS). More cholesterol is needed to obtain phase segregation in ternary mixtures, in which the unsaturated phospholipid is replaced by a saturated one. Finally, lipid dynamics in distinct phases is very low and astonishingly similar, thereby suggesting the poor ability of cholesterol in sorting short-chain saturated glycero-phospholipids and sphingomyelin.  相似文献   

14.
Membrane vesicles from pigeon erythrocytes show a rapid, ATP-dependent accumulation of 45Ca2+. Ca2+ accumulation ratios greater than or approximately equal to 104 are readily attained. For ATP-dependent Ca2+ uptake, V is 1.5 mmol · 1?1 · min?1 at 27°C (approx. 0.9 nmol · mg?1 protein · min?1), [Ca2+]12 is 0.18 μM, [ATP]12 is 30–60 μM, the Ca2+ uptake rate depends on [Ca2+]2 and the dependence of uptake rate on ATP concentration implies strong ATP-ATP cooperativity. The Arrhenius activation energy is 19.1 ± 1.4 kcal/mol and the pH optimum is approx. 6.9.  相似文献   

15.
Functionalized giant unilamellar vesicles (GUVs) containing a fluorescence dye Rhodamine 6G is proposed as a marker in sandwich-type immunoassay for bovine serum albumin (BSA) and lipocalin-2 (LCN2). The GUVs were prepared by the electroformation method and functionalized with anti-BSA antibody and anti-LCN2 antibody, respectively. The purification of antibody-modified GUVs was achieved by conventional centrifugation and a washing step in a flow system. To antigen on an antibody slip, antibody-modified GUVs were added as a marker and incubated. After wash-out of excess reagents and lysis of the bound GUVs with Triton X-100, the fluorescence image was captured. The fluorometric immunoassays for BSA and LCN2 exhibited lower detection limits of 4 and 80 fg ml1, respectively.  相似文献   

16.
Urushiols consist of an o-dihydroxybenzene (catechol) structure and an alkyl chain of 15 or 17 carbons in the 3-position of a benzene ring and are allergens found in the family Anacardiaceae. We synthesized various veratrole (1,2-dimethoxybenzene)-type and catechol-type urushiol derivatives that contained alkyl chains of various carbon atom lengths, including –H, –C1H3, –C5H11, –C10H21, –C15H31, and –C20H41, and investigated their contact hypersensitivities and antioxidative activities. 3-Decylcatechol and 3-pentadecylcatechol displayed contact hypersensitivity, but the other compounds did not induce an allergic reaction, when the ears of rats were sensitized by treatment with the compounds every day for 20 days. Catechol-type urushiol derivatives (CTUDs) exerted very high radical-scavenging activity on the 1,1-diphenyl-2-picrylhydrazyl radical and inhibited lipid peroxidation in a methyl linoleate solution induced by 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN). However, veratrole-type urushiol derivatives did not scavenge or inhibit lipid peroxidation. CTUDs also acted as effective inhibitors of lipid peroxidation of the egg yolk phosphatidylcholine large unilamellar vesicle (PC LUV) liposome system induced by various radical generators such as AMVN, 2,2′-azobis(2-amidino-propane) dihydrochloride, and copper ions, although their efficiencies differed slightly. In addition, CTUDs suppressed formation of cholesteryl ester hydroperoxides in rat blood plasma induced with copper ions. CTUDs containing more than five carbon atoms in the alkyl chain showed excellent lipophilicity in a n-octanol/water partition experiment. These compounds also exhibited high affinities to the liposome membrane using the ultrafiltration method of the PC LUV liposome system. Therefore, CTUDs seem to act as efficient antioxidative compounds against membranous lipid peroxidation owing to their localization in the phospholipid bilayer. These results suggest that nonallergenic CTUDs act as antioxidants to protect against oxidative damage of cellular and subcellular membranes.  相似文献   

17.
The fluorescence decay kinetics of 1-methylpyrene in small unilamellar l-alpha-dimyristoylphosphatidylcholine vesicles above the phase transition temperature has been studied as a function of concentration and temperature. When the 1-methylpyrene/phospholipid ratio equals 1:2000 no excimer is observed and the fluorescence decay is monoexponential. When this ratio is equal to or higher than 1 200, excimer is observed and the monomer and excimer decays can be adequately described by two exponential terms. The deviation of the monomer decays from monoexponentiality cannot be described by a model where the diffusion-controlled excimer formation is time dependent. The observed decays are compatible with the excimer formation scheme which is valid in an isotropic medium. The activation energy of excimer formation is found to be 29-9 +/-1.4 kJ mol . The (apparent) excimer formation constant and the excimer lifetime at different temperatures have been determined. The diffusion coefficient associated with the excimer formation process varies between 2 x 10(-10) m(2)/s at 70 degrees C to 4 x 10(-11) m(2)/s at 25 degrees C.  相似文献   

18.
A procedure for preparing basolateral membrane vesicles from rat renal cortex was developed by differential centrifugation and Percoll density gradient centrifugation, and the uptake of d-[3H]glucose into these vesicles was studied by a rapid filtration technique. (Na+ + K+)-ATPase, the marker enzyme for basolateral membranes, was enriched 22-fold compared with that found in the homogenate. The rate of d-glucose uptake was almost unaffected by Na+ gradient (no overshoot).  相似文献   

19.
The kinetics of osmotically induced changes in vesicular volume and internal solute concentration were analyzed for membrane vesicles containing fixed quantity of impermeable osmoticum in the lumen. The kinetic curves of the concentration and volume changes were shown to be dissimilar. The average durations of these two processes may differ by several tens of percents, depending on the extent and polarity of the initially imposed osmotic gradient. For vesicles containing identical solutes in the internal and external solutions, the problem is analyzed of how the concentration and volume changes are manifested in changes of the effective scattering cross-section of the vesicle. The light scattering changes, directed oppositely to volume changes, were found to coincide roughly with the kinetics of volume changes. The analysis shows that calculations of water permeability coefficient should be based on average duration of volume changes rather than the duration of concentration changes. The replacement in calculations of the first parameter with the second one may result in overestimation of water permeability by a factor of 1.5. This might be relevant to the reported discrepancies in water permeability values determined by the osmotic and isotope methods. Although the allowance for 1.5-fold overestimation cannot fully account for the differences observed, it significantly lowers the discrepancy between these estimates in some cases. The opposite signs of light scattering and volume changes originate from the presence of two components in the optical path of the vesicle, i.e., the membrane and the lumenal solution.  相似文献   

20.
The broadly neutralizing anti-HIV-1 2F5 monoclonal antibody recognizes a gp41 epitope proximal to the viral membrane. Potential phospholipid autoreactivity at cell surfaces has raised concerns about the use of this antibody for development of vaccines or immunotherapy. In this study, confocal microscopy of giant unilamellar vesicles (GUVs) was used to assess 2F5 reactivity with phospholipids assembled into bilayers with surface charge and curvature stress approximating those of the eukaryotic plasma membranes. Antibody partitioning into lipid bilayers required the specific recognition of membrane-inserted epitope, indicating that 2F5 was unable to directly react with GUV phospholipids, even under fluid phase segregation conditions. Our results thus support the feasibility of raising 2F5-like neutralizing responses through vaccination, and the medical safety of mAb infusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号