首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential scanning calorimetry (DSC) and dynamic light scattering (DLS) were used to obtain the gel to liquid-crystalline phase transition temperature (Tm) and the apparent hydrodynamic radius (Rh) of spontaneously formed cationic vesicles of dialkyldimethylammonium bromide salts (CnH2n+1)2(CH3)2N+.Br-, with varying chain lengths. The preparation of cationic vesicles from aqueous solution of these surfactants, for n=12, 14, 16 and 18 (DDAB, DTDAB, DHDAB and DODAB, respectively), requires the knowledge of the surfactant gel to liquid-crystalline phase transition temperature, or melting temperature (Tm) since below this temperature these surfactants are poorly or not soluble in water. That series of cationic surfactants has been widely investigated as vesicle-forming surfactants, although C12 and C18, DDAB and DODAB are by far the most investigated from this series. The dependence of Tm of these surfactants on the number n of carbons in the surfactant tails is reported. The Tm obtained by DSC increases non-linearly with n, and the vesicle apparent radius Rh is about the same for DHDAB and DODAB, but much smaller for DDAB.  相似文献   

2.
Abstract

With the aid of a flow cell assembly the desorption of cationic liposomes prepared from mixtures of dipalmitoylphoshatidylcholine (DDPC), cholesterol, and either dimethyldioctadecylammonium bromide (DDAB) or 3,β[N-(N1,N-dimethylethylenediamine)-carbamoyl]cholesterol (DC-chol) from immoblized biofilms of Staphylococcus aureus has been studied as a function of shear stress by confocal microscopy. A shear stress theory has been adapted from fluid mechanics of laminar flow between parallel plates and used to determine the critical shear stress for liposome desorption. The critical shear stress for both DDAB and DC-chol liposomes has been determined as a function of cationic lipid content and hence surface charge as reflected in their zeta potentials. The critical shear stress has been used to obtain the potential energy of liposome–biofilm interaction which together with the electrostatic interaction energy has enabled estimates of the London-Hamaker constants to be made. The values of the London-Hamaker constants at small liposome-bacterial cell separation were found to be independent of liposome composition.  相似文献   

3.
This paper reports on the properties of bilayers composed of dioctadecyldimethylammonium bromide (DODAB) and oleic acid (OA) at various molar ratios. The mole fraction of OA, XOA, was varied in the range of 0–1 and the total lipid content was constant and equal to 10 mM. The DODAB/OA dispersions were extruded at a temperature higher than that of the gel–liquid transition of DODAB. The morphology of bilayer structures formed in the dispersions was inspected using a cryogenic transmission electron microscopy (cryo-TEM) and a differential interference contrast microscopy (DIC). The observations revealed that the incorporation of OA into DODAB bilayer results in a decrease of the membrane curvature. Anisotropy measurements using 1,6-diphenylhexatriene (DPH) as a rotator probe demonstrated that the DODAB/OA membrane microviscosity decreased considerably for XOA > 0.4. The thermal behavior of DODAB/OA membranes has been studied by differential scanning calorimetry (DSC). In the case of the systems in which XOA < 0.8, the DODAB/OA membranes are in the gel phase at room temperature. Additionally, Langmuir monolayer experiments of the DODAB/OA mixtures showed that due to the electrostatic interactions between the oppositely charged head groups of DODAB and OA they get close to each other, which results in a decrease of the mean area per molecule. The results were next discussed based on the packing parameter concept. The reduction of the mean area per head group (a) in the DODAB/OA systems leads to subsequent increase in the so-called packing parameter (S), which governs the morphology of surfactant aggregates.  相似文献   

4.
The main objective of this work was to increase the retarding effect of the acid dye Telon® Blue RR (C.I. Acid Blue 62; DyStar, Frankfurt, Germany) release on polyamide fibres dyeing by encapsulation of the dye in liposomes as an alternative to synthetic auxiliaries, in order to reduce effluent pollution. The retarding effect achieved with the use of mixed cationic liposomes of dioctadecyldimethylammonium bromide (DODAB)/soybean lecithin (containing a 10% molar fraction of DODAB) was better in comparison with either pure soybean lecithin liposomes or synthetic auxiliaries. The retarding effect of liposomes on the dye release was analysed through changes in the absorption and fluorescence spectra of the acid dye at different conditions. The effect of temperature (in the range of 25 °C - 70 °C) on the spectroscopic behaviour of the dye in the absence and in presence of polyamide was also studied, in order to simulate the dyeing conditions. Exhaustion curves obtained in dyeing experiments showed that, below 45 °C, the retarding effect of the mixed liposomes (lecithin/DODAB (9:1)) was similar to that of the auxiliaries, but better than the one of pure lecithin liposomes. At higher temperatures (above 45 °C), the system lecithin/DODAB presents a better performance, achieving a higher final exhaustion level when compared with the commercial leveling agent without losing the smoothing effect of lecithin.  相似文献   

5.
The effect of phospholipid head group on the membrane-permeabilizing activity of amphotericin B (AmB) was examined using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) liposomes. The activity of AmB was evaluated as K+ influx measured as pH change inside liposomes by fluorescent measurements of 2′,7′-bis(carboxyethyl)-4 or 5-carboxyfluorescein (BCECF). AmB showed prominent permeability in POPC liposomes, whereas hardly inducing ion flux in POPG membrane. POPC added to POPG liposomes as a minor constituent markedly enhanced membrane permeability, indicating the importance of a phosphonocholine group of PC for the drug’s activity.  相似文献   

6.
The effect of entrapped β-cyclodextrin (β-CD) on the stability of multilamellar vesicles (MLVs) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), prepared by the dehydration-rehydration method, was studied by monitoring the release of 5(6)-carboxyfluorescein encapsulated into the liposomes. Different hydrophobic guests, such as Fullerene C60, have been incorporated into the POPC bilayer in order to modify the membrane composition. The kinetic results as well as ESI-MS measurements evidenced that the destabilizing activity of β-CD is due to the formation of β-CD inclusion complexes and the consequent removal of selected bilayer constituents from the liposomal membrane. Hence, when β-CD was added to the liposomes in the form of a strong, water-soluble 2:1 β-CD/C60 inclusion complex, such a destabilizing effect was not observed. However, the same β-CD/C60 inclusion complex does not form as a result of C60 extraction from the bilayer. This may be attributed either to the overwhelming concentration of POPC with respect to C60 and/or to the fact that C60 is largely aggregated in the bilayer. Turbidimetric and fluorimetric determinations of lamellarity and entrapped volume of the studied MLVs provided further evidence of the alteration of the liposomal bilayer as a consequence of the addition of β-CD and/or the presence of the studied guests.  相似文献   

7.
Dendrimers are individual macromolecular compounds having a great potential for biomedical application. The key step of the cell penetration by dendrimers is the interaction with lipid bilayer. Here, the interaction between cationic pyridylphenylene dendrimer of third generation (D350+) and multicomponent liquid (CL/POPC), solid (CL/DPPC) and cholesterol-containing (CL/POPC/30% Chol) anionic liposomes was investigated by dynamic light scattering, fluorescence spectroscopy, conductometry, calorimetric studies and molecular dynamic (MD) simulations. Microelectrophoresis and MD simulations revealed the interaction is electrostatic and reversible with only part of pyridinium groups of dendrimers involved in binding with liposomes. The ability of dendrimer molecules to migrate between liposomes was discovered by the labeling liposomes with Rhodamine B. The phase state of the lipid membrane and the incorporation of cholesterol into the lipid bilayer were found to not affect the mechanism of the dendrimer - liposome complex formation. Rigid dendrimer adsorption on liposomal surface does not induce the formation of significant defects in the lipid membrane pave the way for possible biological application of pyridylphenylene dendrimers.  相似文献   

8.
Biomembranes play an important role in cellular response to heat stress. In this study, we focus on the interaction between liposomes and tRNA. Upon heat treatment we determined circular dichroism spectra of tRNA in presence of liposomes prepared from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and cholesterol (Ch). To compare thermal stability, midpoint temperature (Tm) of tRNA was calculated from normalized θ208. Addition of POPC/Ch liposomes decreased the Tm value of tRNA from 48°C to 38°C. We conclude that POPC/Ch liposomes interact with tRNA and destabilize its conformation under heat stress.  相似文献   

9.
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an α-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The 31P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC35 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.  相似文献   

10.
Proteinase K-containing liposomes with highly selective membrane permeability properties were prepared. The selectivity obtained was with respect to the two substrate molecules added to the external aqueous phase of the liposomes: acetyl-L-Ala-Ala-Ala-p-nitroanilide (Ac-AAA-pNA) and succinyl-L-Ala-Ala-Ala-p-nitroanilide (Suc-AAA-pNA). The liposome-forming lipid used was POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and modulation of the membrane permeability was achieved using the detergent cholate. Proteinase K-containing mixed liposomes (PKCL) were prepared by adding cholate to preformed proteinase K-containing POPC liposomes (PKL) at a defined effective cholate/POPC molar ratio in the liposomal bilayer membrane R(e). Proteinase K was kept inside PKCL with a negligible amount of leakage into the bulk aqueous phase at R(e) < or = 0.30. At higher R(e), leakage of proteinase K was pronounced, even under conditions where POPC/cholate mixed liposomes seemed to be still intact (0.30 < R(e) < or = 0.39). At R(e) < or = 0.30, the reactivity of proteinase K in the PKCL measured with the externally added substrate Ac-AAA-pNA increased with increasing R(e), while the reactivity measured with Suc-AAA-pNA remained low, regardless of the R(e) value. This showed that externally added Ac-AAA-pNA molecules permeated the liposomal membrane more easily than Suc-AAA-pNA by modulating the membrane with cholate. Consequently, Ac-AAA-pNA was hydrolyzed in PKCL with considerably higher apparent substrate selectivity in comparison with the cases of proteinase K in PKL and free proteinase K (without liposomal encapsulation). The results obtained clearly demonstrate that the prepared PKCL can be utilized as a kind of nano-scaled bioreactor system which can take up a particular target substrate with high apparent substrate selectively from the external phase of the liposomes. Inside the liposomes, the target substrate is then converted into the corresponding products.  相似文献   

11.
The luciferase gene expression of lipoplexes, a liposome containing luciferase plasmid (pCMVLuc), in HeLa cell lines, was investigated. Cationic liposomes were prepared by the chloroform film method with sonication. The lipoplex was formed by loading the liposome with pCMVLuc. The lipoplex with an optimal weight ratio of dimethyl dioctadecyl ammonium bromide (DDAB)/pCMVLuc protected from DNaseI was determined by an agarose gel electrophoresis. The selected lipoplexes were assayed for luciferaase activity by using a luminometer. The effect on cell proliferation was evaluated by WST-1 assay. The highest luciferase activity of 1.5 × 106 RLU was observed in the cholesterol (Chol)/DDAB (2:1 molar ratio) lipoplex at the DDAB/pCMVLuc weight ratio of 10:1 at 48 hours, which was about 10, 100, and 1,000 times higher than the DDAB, L-alpha-dipalmitoyl phosphatidylcholine (DPPC)/Chol/DDAB (1:2:1 molar ratio), and DPPC/Chol/DDAB (2:2:1 molar ratio) lipoplexes, respectively. The liposome with the smallest particle size was obtained from the cationic liposome composed of DPPC/Chol/DDAB (7:1:1 molar ratio) with the ζ potential of 7.17 ± 0.73. The optimal weight ratio of DDAB/pCMVLuc that protected pCMVLuc from DNaseI digestion was 4:1 in the DDAB formulation. The Chol/DDAB (2:1 molar ratio) lipoplex with the DDAB/pCMVLuc of 10:1 showed the highest luciferase activity of 1.5 × 106 RLU and the highest cytotoxicity as well. DPPC/Chol/DDAB (1:1:1 molar ratio)-lipoplex (DDAB/pCMVLuc = 14:1), which had the amount of DPPC and cholesterol not exceeding 33 and 50% mol, respectively, gave the lower gene expression of about 4 times, but lower cytoxicity of about 14 times, than the Chol/DDAB lipoplex (2:1 molar ratio) and was considered to be the most suitable formulation. The results from this study can be applied as a model for the development of a gene-therapeutic dosage form.  相似文献   

12.
With the aid of a flow cell assembly the desorption of cationic liposomes prepared from mixtures of dipalmitoylphoshatidylcholine (DDPC), cholesterol, and either dimethyldioctadecylammonium bromide (DDAB) or 3,beta[N-(N1,N-dimethylethylenediamine)-carbamoyl]cholesterol (DC-chol) from immobilized biofilms of Staphylococcus aureus has been studied as a function of shear stress by confocal microscopy. A shear stress theory has been adapted from fluid mechanics of laminar flow between parallel plates and used to determine the critical shear stress for liposome desorption. The critical shear stress for both DDAB and DC-chol liposomes has been determined as a function of cationic lipid content and hence surface charge as reflected in their zeta potentials. The critical shear stress has been used to obtain the potential energy of liposome-biofilm interaction which together with the electrostatic interaction energy has enabled estimates of the London-Hamaker constants to be made. The values of the London-Hamaker constants at small liposome-bacterial cell separation were found to be independent of liposome composition.  相似文献   

13.
Confocal laser scanning microscopy has been used to visualise the adsorption of fluorescently labelled liposomes on immobilised biofilms of the bacterium Staphylococcus aureus. The liposomes were prepared with a wide range of compositions with phosphatidylcholines as the predominant lipids using the extrusion technique. They had weight average diameters of 125 +/- 5 nm and were prepared with encapsulated carboxyfluorescein. Cationic liposomes were prepared by incorporating dimethyldioctadecylammonium bromide (DDAB) or 3, beta [N-(N1,N1 dimethylammonium ethane)-carbamoyl] cholesterol (DC-chol) and anionic liposomes were prepared by incorporation of phosphatidylinositol (PI). Pegylated cationic liposomes were prepared by incorporation of DDAB and 1,2-dipalmitoylphosphatidylethanolamine-N-[polyethylene glycol)-2000]. Confocal laser scanned images showed the preferential adsorption of the fluorescent cationic liposomes at the biofilm-bulk phase interface which on quantitation gave fluorescent peaks at the interface when scanned perpendicular (z-direction) to the biofilm surface (x-y plane). The biofilm fluorescence enhancement (BFE) at the interface was examined as a function of liposomal lipid concentration and liposome composition. Studies of the extent of pegylation of the cationic liposomes incorporating DDAB, on adsorption at the biofilm-bulk phase interface were made. The results demonstrated that pegylation inhibited adsorption to the bacterial biofilms as seen by the decline in the peak of fluorescence as the mole% DPPE-PEG-2000 was increased in a range from 0 to 9 mole%. The results indicate that confocal laser scanning microscopy is a useful technique for the study of liposome adsorption to bacterial biofilms and complements the method based on the use of radiolabelled liposomes.  相似文献   

14.
Abstract

Cationic and anionic liposomes have been prepared by extrusion from dipalmitoylphosphatidylcholine (DPPC) and its mixtures with cholesterol and dimethyldioctadecyltrimethylammonium bromide (DDAB) and with phosphatidylinositol (PI) respectively covering a range of composition from 0 to 19 mole % DDAB and PI. The adsorption of liposomal lipid from the liposome dispersion onto particles of silica and titanium dioxide in suspension has been studied as a function of liposome composition and concentration. The adsorption isotherms have been fitted using a Langmuir equation from which the binding constants and maximum surface coverage were obtained. The Gibbs energies of adsorption for the cationic liposomes were on average -61.0 ± 2.1 kJ mol?1 (on silica) and -50.6 ± 2.9 kJ mol?1 (on titanium dioxide). On average saturation adsorption is equivalent to 3 to 10 lipid monolayers on silica and 3 to 7 on titanium dioxide. Using liposomes encapsulating D-glucose it is demonstrated that there is almost no release of glucose on adsorption of the lipid, indicating that the liposomes are adsorbed intact to form a liposome monolayer on the particle surfaces. Adsorption of intact liposomes to form a close-packed liposome monolayer of solid supported vesicles (SSV) is shown to be equivalent to on average 7.0 ± 0.2 phospholipid monolayers. The SSVs are shown to have increased stability to disruption by surfactants and when carrying the oil-soluble bactericide, Triclosan?, to be capable of inhibiting the growth of oral bacteria from immobilised biofilms.  相似文献   

15.
Dioctadecyldimethylammonium bromide (DODAB)/dipalmitoylphosphatidylcholine (DPPC) large and cationic vesicles obtained by vortexing a lipid film in aqueous solution and above the mean phase transition temperature (T(m)) are characterized by means of determination of phase behaviour, size distribution, zeta-potential analysis and colloid stability. The effect of increasing % DODAB over the 0-100% range was a nonmonotonic phase behaviour. At 50% DODAB, the mean phase transition temperature and the colloid stability were at maximum. There is an intimate relationship between stability of the bilayer structure and colloid stability. In 1, 50 and 150mM NaCl, the colloid stability for pure DPPC or pure DODAB vesicles was very low as observed by sedimentation or flocculation, respectively. In contrast, at 50% DODAB, remarkable colloid stability was achieved in 1, 50 or 150mM NaCl for the DODAB/DPPC composite vesicles. Vesicle size decreased but the zeta-potential remained constant with % DODAB, due to a decrease of counterion binding with vesicle size. This might be important for several biotechnological applications currently being attempted with cationic bilayer systems.  相似文献   

16.
Liu S  Lu G 《Biophysical chemistry》2007,127(1-2):19-27
The interaction between ribonucleotides (AMP, ADP, and ATP) and cationic vesicles prepared from dioctadecyldimethylammonium bromide (DODAB) were investigated in detail. The physicochemical properties of ribonucleotides/cationic lipid complexes were present. Gel exclusion-UV spectroscopic results showed that all the charge ratios of DODAB/ribonucleotides (AMP, ADP, and ATP) are 2:1 when the maximal ribonucleotides were adsorbed onto DODAB, while the molar ratios were different, e.g., 2:1 for DODAB/AMP, 4:1 for DODAB/ADP and 6:1 for DODAB/ATP. These differences may be attributed to the different anion charges of AMP, ADP and ATP. The results demonstrated that ribonucleotides combined with DODAB vesicles with the electrostatic attraction in the complexation of DODAB and ribonucleotides. Transmission electron microscopic results revealed the different extents of aggregation of cationic vesicles in the complexation process of ribonucleotides with cationic lipid. The variation dependence of zeta-potentials or electrophoretic mobilities on vesicle size was also different. The zeta-potentials and electrophoretic mobilities of the DODAB vesicles (0.01 and 0.02 mM) gradually decreased when the ribonucleotide concentration increased. However, the mean diameters of the DODAB vesicles (0.1 and 0.5 mM) gradually increased when the ribonucleotide concentration increased.  相似文献   

17.
The mechanism of complex formation between DNA and oppositely charged dioctadecyldimethylammonium bromide/dioleoyl phosphatidylethanolamine (DODAB/DOPE) and 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/DOPE mixed liposomes, as well as the physico-chemical properties of DNA-mixed liposome complexes, were examined. Fluorescence microscopy showed that the interaction between DNA and oppositely charged mixed liposomes started at very low liposome concentrations and induced a discrete coil-globule transition in individual DNA molecules. The DNA size distribution was bimodal in a wide range of liposome concentrations. The critical concentration of the cationic lipid needed for the complete compaction of single DNA molecules depended on the composition of the charged mixed DODAB/DOPE and DOTAP/DOPE liposomes. Cryogenic transmission electron microscopy (cryo-TEM) observations of DNA complexes with mixed liposomes revealed that the lamellar packing of lipid molecules was typical for the complexes formed from the cationic lipid-enriched mixtures, while inverted hexagonal arrays were found for the neutral lipid-enriched complexes. The microstructures of the complexes were also examined with the use of the small-angle X-ray scattering (SAXS) technique, which confirmed the results obtained by cryo-TE microscopy and enabled the quantitative characterization of lipid packaging in the complexes with DNA macromolecules. We also found that the introduction of the neutral lipid into the complexes between DNA and oppositely charged lipids, DODAB and DOTAP, moderately increased the thermal stability of the complexes and changed the quantitative characteristics of the melting profiles of the complexes.  相似文献   

18.
A dedicated dynamic light scattering (DLS) setup was employed to study the undulations of freely suspended planar lipid bilayers, the so-called black lipid membranes (BLM), over a previously inaccessible spread of frequencies (relaxation times ranging from 10(-2) to 10(-6) s) and wavevectors (250 cm(-1) < q < 38,000 cm(-1)). For a BLM consisting of 1,2-dielaidoyl-sn-3-glycero-phosphocholine (DEPC) doped with two different proportions of the cationic lipid analog dioctadecyl-dimethylammonium bromide (DODAB) we observed an increase of the lateral tension of the membrane with the DODAB concentration. The experimentally determined dispersion behavior of the transverse shear mode was in excellent agreement with the theoretical predictions of a first-order hydrodynamic theory. The symmetric adsorption of the crystalline bacterial cell surface layer (S-layer) proteins from Bacillus coagulans E38-66 to a weakly cationic BLM (1.5 mol % DODAB) causes a drastic reduction of the membrane tension well beyond the previous DODAB-induced tension increase. The likely reason for this behavior is an increase of molecular order along the lipid chains by the protein and/or partial protein penetration into the lipid headgroup region. S-layer protein adsorption to a highly cationic BLM (14 mol % DODAB) shows after 7 h incubation time an even stronger decrease of the membrane tension by a factor of five, but additionally a significant increase of the (previously negligible) surface viscosity, again in excellent agreement with the hydrodynamic theory. Further incubation (24 h) shows a drastic increase of the membrane bending energy by three orders of magnitude as a result of a large-scale, two-dimensional recrystallization of the S-layer proteins at both sides of the BLM. The results demonstrate the potential of the method for the assessment of the different stages of protein adsorption and recrystallization at a membrane surface by measurements of the collective membrane modes and their analysis in terms of a hydrodynamic theory.  相似文献   

19.
Glucose oxidase-containing liposomes (GOL) as well as detergent-modulated glucose oxidase-containing liposomes were prepared and characterized, focusing not only on the reactivity of the liposomes upon external addition of glucose but also on the leakage of the entrapped glucose oxidase (GO) from the liposomes with the aim of developing a reactive and stable liposomal GO system. The membranes of the GOL prepared were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and modulated with either Triton X-100 or cholate. In the absence of added detergent, no GO leakage from the GOL was observed while its enzymatic activity was very low (low glucose permeability). As detergent-modulated liposomes, mixed POPC/Triton X-100 and mixed POPC/cholate liposomes (abbreviated as TL and CL, respectively) were prepared at different effective detergent/POPC molar ratios (R(e)) ranging from R(e) = 0 to R(e) = R(e) (sat) (R(e) (sat) is the critical value of R(e) at which the liposome membrane is saturated with detergent). The reactivity of GO-loaded TL (abbreviated as GOTL) or GO-loaded CL (GOCL) increased drastically with increase in the respective detergent content in the liposomes. In the case of GOTL, at R(e) (sat) = 0.40, a high reactivity was measured with a simultaneous high extent of GO leakage, suggesting that the observed enzymatic reaction was catalyzed mainly by leaked GO, caused by the interaction of Triton X-100 with the POPC membrane. On the other hand, GOCL prepared at R(e) (sat) = 0.43 showed relatively high reactivity with only a small extent of GO leakage, suggesting that most of the enzyme reaction was limited by the glucose permeation across the bilayers of GOCL. The GO leakage from GOCL was found to occur mostly during the rearrangement of the liposomal membrane during the preparation of the GOCL (mixing the GOL and cholate). Fluorescence polarization measurements of membrane-associated DPH (1,6-diphenyl-1,3,5-hexatriene) indicated that CL prepared by modifying POPC with cholate did not lead to a drastic change in membrane fluidity, indicating that the interacting cholate molecules did not penetrate deeply into the POPC bilayers. In summary, it was clearly shown that the membrane permeability of GOL can be quite simply modulated by mixing it with a certain amount of cholate to form highly reactive and stable GOCL with minimal enzyme leakage.  相似文献   

20.
The growth of cationic lipid dioctadecyldimethylammonium bromide (DODAB) toward bilayer lipid membrane (BLM) by solution spreading on cleaved mica surface was studied by atomic force microscopy (AFM). Bilayer of DODAB was formed by exposing mica to a solution of DODAB in chloroform and subsequently immersing into potassium chloride solution for film developing. AFM studies showed that at the initial stage of the growth, the adsorbed molecules exhibited the small fractal-like aggregates. These aggregates grew up and expanded laterally into larger patches with time and experienced from monolayer to bilayer, finally a close-packed bilayer film (5.4+/-0.2 nm) was approached. AFM results of the film growth process indicated a growth mechanism of nucleation, growth and coalescence of dense submonolayer, it revealed the direct information about the film morphology and confirmed that solution spreading was an effective technique to prepare a cationic bilayer in a short time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号