首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous observations that cyclic 3',5'-nucleotide phosphodiesterase activity exists in mammalian sera including human serum prompted us to investigate the phosphodiesterase levels in sera of patients with various thyroid disorders. Both serum cyclic AMP phosphodiesterase (cAMP-PDE) and cyclic GMP phosphodiesterase (cGMP-PDE) activities measured in a low substrate concentration were elevated 3-fold in subacute thyroiditis and slightly in hyperthyroidism, compared to the normal. Slight decreases of these enzyme activities were observed in primary hypothyroidism. PDE activities were positively correlated with the value of T3-RSU and serum thyroid hormone levels in hyper- and hypothyroidism. Altered enzyme activities returned to normal during the course of recovery. Identical results were obtained when plasma was tested. These results suggest that serum PDE activities may be partly related to the thyroid function.  相似文献   

2.
Characteristics of 5'-nucleotide phosphodiesterase (phosphodiesterase I, EC 3.1.4.1) and alkaline phosphatase (EC 3.1.3.1) activities in tumor cell lines of human and murine origin were examined. Of the 15 cell lines tested, 5'-nucleotide phosphodiesterase activity in 13 cell lines and alkaline phosphatase activity in 10 cell lines were inhibited by N-ethylmaleimide and activated by dithiothreitol (N-ethylmaleimide-sensitive), and suggested to be SH-enzymes. In contrast, the two phosphohydrolases from normal tissues were inactivated by dithiothreitol, but not by N-ethylmaleimide (dithiothreitol-sensitive). There was only one tumor cell line in which both activities were dithiothreitol-sensitive. Human hepatoma PLC/PRF/5 cells appear to possess both types of 5'-nucleotide phosphodiesterase and alkaline phosphatase, and the subcellular distribution of these enzymes in this cell line was investigated. Dithiothreitol-sensitive 5'-nucleotide phosphodiesterase and alkaline phosphatase of PLC/PRF/5 cells were localized in the plasma membrane as in normal tissues, but N-ethylmaleimide-sensitive phosphohydrolases were soluble cytosolic proteins. N-Ethylmaleimide-sensitive 5'-nucleotide phosphodiesterase and alkaline phosphatase activities from other cell lines were also recovered in the cytosol. Molecular masses of cytosolic N-ethylmaleimide-sensitive phosphohydrolases were apparently smaller than their membrane-bound dithiothreitol-sensitive counterparts, as judged from gel filtration. It was concluded that many tumor cell lines lack plasma membrane 5'-nucleotide phosphodiesterase and alkaline phosphatase, but express enzymes with similar activities in the cytosol, with properties clearly distinguishable from enzymes so far characterized.  相似文献   

3.
J S Culp  L G Butler 《Biochemistry》1985,24(24):6825-6829
Polyclonal antibodies to native alkaline phosphatase and to native 5'-nucleotide phosphodiesterase were found to strongly cross-react with both enzymes. The antibodies also cross-react with both denatured enzymes, with glycopeptides from 5'-nucleotide phosphodiesterase, and with the oligosaccharides remaining after Pronase E digestion of the phosphodiesterase. They do not cross-react with either enzyme after their oligosaccharides have been modified or removed by periodate or trifluoromethanesulfonic acid treatment. Antibodies to denatured 5'-nucleotide phosphodiesterase do not bind to the native phosphodiesterase or alkaline phosphatase but do cross-react with denatured alkaline phosphatase even after removal or modification of the carbohydrate moieties. These results suggest that antibodies to denatured 5'-nucleotide phosphodiesterase may recognize amino acid sequence homology between alkaline phosphatase and 5'-nucleotide phosphodiesterase. However, antibodies to native enzymes apparently recognize cross-reactive determinants of the native enzymes which are carbohydrate in nature. This is the first report of antimammalian alkaline phosphatase antibodies which recognize the carbohydrate moieties of the enzyme.  相似文献   

4.
Ca2+-sensitivity of sheep lung cyclic-3',5'-nucleotide phosphodiesterase is provided by endogenous tightly bound calmodulin. The calcium sensitivity of a highly purified enzyme was desensitized by increasing the assay temperature. It could also be desensitized to Ca2+-activation by thiols such as dithiothreitol. The thiol-induced desensitization could be partially reversed by dialysis and almost completely reversed by dilution. The results presented in this paper indicate that thiols are possibly involved in the interaction of calmodulin with cyclic-3',5'-nucleotide phosphodiesterase. This is the first report on temperature and thiol-induced desensitization of Ca2+-sensitivity of a cyclic-3',5'-nucleotide phosphodiesterase.  相似文献   

5.
The concentration of adenosine 3',5'-monophosphate (cyclic AMP) and the activity of adenylate cyclase were determined for the first time in conjuncation with cyclic 3',5'-nucleotide phosphodiesterase (phosphodiesterase) during the growth cycle of Tetrahymena pyriformis. High levels of cyclic AMP observed during early exponential and late stationary phases were associated with elevated adenylate cyclase and decreased phosphodiesterase activities. Adenylate cyclase and cyclic AMP were decreased and phosphodiesterase was increased in cells grown in glucose-supplemented medium. In contrast to findings in mammalian liver, cyclic AMP was decreased during active gluconeogenesis in Tetrahymena. This suggests a different modulation of carbohydrate metabolism in the two species. The results illustrate that both the content of cyclic AMP and its action as a regulatory agent in Tetrahymena are uniquely suited to the metabolism of this organism.  相似文献   

6.
Highly purified sheep lung cyclic-3',5'-nucleotide phosphodiesterase was sensitive to Ca2+/EGTA but insensitive to exogenous calmodulin. The Ca2+-sensitivity was inhibited by trifluoperazine. Heat-treated enzyme could activate a calmodulin-deficient phosphodiesterase, suggesting the presence of endogenous calmodulin in sheep lung cyclic-3',5'-nucleotide phosphodiesterase, possibly associated with the enzyme in a Ca2+-independent manner.  相似文献   

7.
We have previously reported that many tumor cell lines express a 5'-nucleotide phosphodiesterase (phosphodiesterase I, EC 3.1.4.1) with properties clearly distinguishable from enzymes of normal tissues (Biochim. Biophys. Acta (1988) 966, 99-106). Such an enzyme with 5'-nucleotide phosphodiesterase activity was purified from Ehrlich ascites carcinoma by measuring the cleavage of thymidine 5'-monophosphate p-nitrophenyl ester (TMP-NP). The enzyme is a soluble protein, has a pH optimum of 7.5, and the molecular mass estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 67 kDa. The enzyme does not hydrolyze other chromogenic substrates for phosphodiesterases, nor pyrophosphate bond of various nucleotides which are cleaved by 5'-nucleotide phosphodiesterases of normal tissues. But, it hydrolyzes dinucleotides to form 5'-phosphates, and is more active on 2',5'- than on 3',5'-phosphodiester bonds. These results indicate that the TMP-NP splitting enzyme in Ehrlich ascites carcinoma cells is a 2',5'-phosphodiesterase.  相似文献   

8.
The nucleotide-sugar pyrophosphatase activity of rat small intestine was studied using GDP-[14C]Man as substrate. The highest specific activities in the gastrointestinal tract were in the proximal small intestine, with a preferential localization in villus tip cells. Purified brush-border membranes were highly enriched in nucleotide-sugar pyrophosphatase. After the enzyme was solubilized with detergent and purified 180-fold, it hydrolyzed FAD and p-nitrophenyl-5'-thymidylate, as well as nucleotide sugars. That the same enzyme, a 5'-nucleotide phosphodiesterase, is responsible for nucleotide-sugar pyrophosphatase, phosphodiesterase I, and FAD pyrophosphatase activities is indicated by: co-migration in electrophoresis, parallel thermal inactivation, competitive inhibition studies, and similar regional, cellular, and subcellular localizations.  相似文献   

9.
Two molecular species of repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities were detected in mycelial culture media of wild-type Neurospora crassa and purified. The two molecular species were found to be monomeric and polymeric forms of an enzyme constituted of identical subunits having molecular weights of 50,000. This enzyme had the same electrophoretic mobility as repressible acid phosphatase. The enzyme designated repressible cyclic phosphodiesterase showed pH optima of 3.2 to 4.0 with a cyclic 3',5'-AMP substrate and 5.0 to 5.6 with a cyclic 2',3'-AMP substrate. Repressible cyclic phosphodiesterase was activated by MnCl2 and CoCl2 with cyclic 2',3'-AMP as substrate and was slightly activated by MnCl2 with cyclic 3',5'-AMP. The enzyme hydrolyzed cyclic 3',5'- and cyclic 2',3'-nucleotides, in addition to bis-rho-nitrophenyl phosphate, but not certain 5' -and 3'-nucleotides. 3'-GMP and 3'-CMP were hydrolyzed less efficiently. Mutant strains A1 (nuc-1) and B1 (nuc-2), which cannot utilize RNA or DNA as a sole source of phosphorus, were unable to produce repressible cyclic phosphodiesterase. The wild type (74A) and a heterocaryon between strains A1 and B1 produced the enzyme and showed growth on orthophosphate-free media containing cyclic 2',3'-AMP or cyclic 3',5'-AMP, whereas both mutants showed little or no growth on these media.  相似文献   

10.
An extract of rat liver or human platelet displayed three cyclic 3':5'-nucleotide phosphodiesterase activity peaks (I, II, and III) in a continuous sucrose density gradient when assayed with millimolar adenosine 3':5'-monophosphate (cAMP) or guanosine 3':5'-monophosphate (cGMP). The three fractions obtained from each nucleotide were not superimposable. The molecular weights corresponding to the three activity peaks of cAMP phosphodiesterase in rat liver were approximately: I, 22,000; II, 75,000; and III, 140,000. In both tissues, fraction I was barely detectable when assayed with micromolar concentrations of either nucleotide, presumably because fraction I has low affinity for cAMP and cGMP. Any one of the three forms upon recentrifugation on the gradient generated the others, indicating that they were interconvertible. The multiple forms appear to represent different aggregated states of the enzyme. The ratio of the three forms of cAMP phosphodiesterase in the platelet was shifted by dibutyryl cAMP (B2cAMP) and by the enzyme concentration. B2cAMP enhanced the formation of fraction I. Low enzyme concentration favored the equilibrium towards fraction I, while high enzyme concentration favored fraction III. When phosphodiesterase activities in the extract of rat liver, human platelets, or bovine brain were examined as a function of enzyme concentration, rectilinear rates were observed with micromolar, but not with millimolar cAMP or cGMP. The specific activity with millimolar cAMP was higher with low than with high protein concentrations, suggesting that the dissociated form catalyzed the hydrolysis of cAMP faster than that of the associated form. In contrast, the specific activity with millimolar cGMP was lower with low than with high protein concentrations. Supplementing the reaction mixture with bovine serum albumin to a final constant protein concentration did not affect the activity, suggesting that the concentration of the enzyme rather than that of extraneous proteins affected the enzyme activity. A change in enzyme concentration affected the kinetic properties of phosphodiesterase. A low enzyme concentration of cAMP phosphodiesterase yielded a linear Lineweaver-Burk plot, and a Km of 1.2 X 10(-4) M (bovine), 3 X 10(-5) M (platelet), or 5 X 10(-4) M (liver), while a high enzyme concentration yielded a nonlinear plot, and apparent Km values of 1.4 X 10(-4) M and 2 X 10(-5) M (brain), 4 X 10(-5) M and 3 X 10(-6) M (platelet), or 4 X 10(-5) M and 3 X 10(-6) (liver). Since a low enzyme concentration favored fraction I, the dissociated form, whereas a high enzyme concentration favored fraction III, the associated form, these kinetic constants suggest that the dissociated form exhibits a high Km and the associated form exhibits a low Km. In contrast, a high enzyme concentration gave a linear kinetic plot for cGMP phosphodiesterase, while a low enzyme concentration gave a nonlinear plot...  相似文献   

11.
目的:探究通过抑制磷酸二酯酶活性促进cAMP发酵合成的工艺方法.方法:在7 L发酵罐上进行添加氨茶碱的发酵实验,通过对发酵主要参数、关键酶活性、能量代谢水平等进行分析,针对性提出了氨茶碱与柠檬酸盐协同作用促进cAMP合成的发酵工艺.结果:与对照相比,添加5 mg/L氨茶碱批次的cAMP产量提高25.9%,副产物腺苷浓度...  相似文献   

12.
4-Nitrophenyl and 2-napthyl monoesters of phenylphosphonic acid have been synthesized, and an enzyme catalyzing their hydrolysis was resolved from alkaline phosphatase of a commerical calf intestinal alkaline phosphatase preparation by extensive ion-exchange chromatography, chromatography on L-phenylalanyl-Sepharose with a decreasing gradient of (NH4) 2SO4, and gel filtration. Detergent-solubilized enzyme from fresh bovine intestine was purified after (NH4)2SO4 fractionation by the same technique. The purified enzyme is homogeneous by polyacrylamide gel electrophoresis and sedimentation equilibrium centrifugation. It has a molecular weight of 108,000, contains approximately 21% carbohydrate, and has an amino acid composition considerably different from that reported from alkaline phosphatase from the same tissue. The homogeneous intestinal enzyme, an efficient catalyst of phosphonate ester hydoolysis but not of phosphate monoester hydrolysis, was identified as a 5'-nucleotide phosphodiesterase by its ability to hydrolyze 4-nitrophenyl esters of 5'-TMP but not of 3'-TMP. Also consistent with this identification was the ability of the enzyme to hydrolyze 5'-ATP to 5'-AMP and PPi, NAD+ to 5'-AMP and NMN, TpT to 5'-TMP and thymidine, pApApApA to 5'-AMP, and only the single-stranded portion of tRNA from the 3'-OH end. Snake venom 5'-nucleotide phosphodiesterase also hydrolyzes phosphonate esters, but 3'-nucleotide phosphodiesterase of spleen and cyclic 3',5'-AMP phosphodiesterase do not. Thus, types of phosphodiesterases can be conveniently distinguished by their ability to hydrolyze phosphonate esters. As substrates for 5'-nucleotide phosphodiesterases, phosphonate esters are preferable to the more conventional esters of nucleotides and bis(4-nitrophenyl) phosphate because of their superior stability and ease of synthesis. Furthermore, the rate of hydrolysis of phosphonate esters under saturating conditions is greater than that of the conventional substrates. At substrate concentrations of 1 mM the rates of hydrolysis of phosphonate esters and of nucleotide esters are comparable and both superior to that of bis(4-nitrophenyl) phosphate.  相似文献   

13.
Bovine intestinal 5'-nucleotidase has been partially purified and characterized for comparison with two other phosphohydrolases from the same tissue, alkaline phosphatase and 5'-nucleotide phosphodiesterase, which are closely related structurally and mechanistically. Kinetic studies with a variety of nucleotides and phosphonate analogs show that, although 5'-nucleotidase is a monoesterase like alkaline phosphatase, it more closely resembles 5'-nucleotide phosphodiesterase in its high affinity and specificity for nucleotide binding. 5'-Nucleotidase is bound very strongly by an affinity column containing a bound phosphonate analog of ADP but is not bound by an affinity column containing a non nucleotide phosphonate which selectively binds alkaline phosphatase. 5'-Nucleotidase is strongly bound by immobilized antibodies prepared against 5'-nucleotide phosphodiesterase, and is less strongly bound by immobilized antibodies prepared against alkaline phosphatase. We conclude that 5'-nucleotidase is structurally more similar to 5'-nucleotide phosphodiesterase than to another monoesterase, alkaline phosphatase.  相似文献   

14.
Extensive kinetic studies of bovine intestinal 5'-nucleotide phosphodiesterase as a function of pH have confirmed and amplified the catalytic mechanism previously proposed on the basis of isolation of a covalent phosphorylated intermediate (Landt, M., and Butler, L.G. (1978) Biochemistry 17, 4130-4135). An enzyme-ionizing group with apparent pKa = 6.85 controls the rate-determining step. Electrostatic interactions between anionic substrate and two or more ionic groups on the enzyme have a major role in substrate binding. Binding of strongly inhibitory 5'-AMP is controlled by an ionizing group, probably on the enzyme, with pKa less than or equal to 5.9. At pH 6.0, imidazole is a classic uncompetitive inhibitor, in agreement with independent evidence that it stabilizes the covalent intermediate form of the enzyme. KI values for phosphonate analogs, which are competitive inhibitors, indicate that phosphodiesterase binds its products and product analogs more strongly than it binds substrate analogs. Some of the results presented here can be interpreted as indicating that 5'-nucleotide phosphodiesterase is the evolutionary precursor of alkaline phosphatase, with which it has many structural and catalytic properties in common, and which is found in relatively large amounts in the same tissue.  相似文献   

15.
Cyclic nucleotide phosphodiesterase activities of baby hamster kidney cells (BHK) grown in surface cultures were altered by modifying growth conditions. The untransformed BHK cells grown in medium containing 10% fetal calf serum showed non-linear LineweaverBurk plots for cyclic AMP phosphodiesterase activity with apparent Michaelis constants for cyclic AMP of approximately 5 and 30 muM. When these cells were placed in medium containing 1% fetal calf serum, linear kinetic plots for cyclic AMP phosphodiesterase with an apparent Km for cyclic AMP of approximately 20 muM were obtained. Modification of the apparent Km of BHK cell phosphodiesterase was detectable within 20 minutes after dillution of cells grown in 10% serum into fresh medium containing 1% serum. With the BHK cell line transformed with Rous sarcoma virus, differences in enzyme kinetics were not seen when these cells were diluted in 1% or 10% serum. In addition to the serum induced differences in the apparent Km of cyclic AMP phosphodiesterases of BHK cells, total cyclic AMP and cyclic GMP phosphodiesterase activities were also modified by growth conditions. BHK cells grown to high cell densities had three to five-fold higher total cyclic AMP activity than did the cells in less dense cultures. When the dense cell cultures were diluted into fresh medium containing 10% serum, total enzyme activities fell to levels comparable to those found in the rapidly growing cells at low cell densities. The reduction in total enzyme activity after dilution of BHK cells occurred rapidly and was influenced by cell density. A similar reduction of total enzyme activity was also seen in diluted RSV cells; however, the time course of the response differed from that seen in the untransformed cells.  相似文献   

16.
The brief rise in the cellular cyclic AMP content which occurs late in the prereplicative phases of rat hepatocytes in vivo and T51B rat liver epitheloid cells in vitro seems to be necessary for the initiation of DNA synthesis. Thus, the extracellular calcium-deprivation in T51B rat liver cells in culture which induces a late G-1 block is rapidly reversible (cells surge into S phase within one hour) either by creating a cyclic AMP surge by the addition of calcium or 3-isobutyl-1-methyl xanthine (a cyclic 3',5'-nucleotide phosphodiesterase inhibitor) or by the exogenous addition of low concentrations of cyclic AMP itself (i.e., 10(-8)-10(-5) M). On the other hand, prevention of the calcium-induced cyclic AMP surge by imidazole (a cyclic 3',5'-nucleotide phosphodiesterase activator) blocked the initiation of DNA synthesis by the calcium-deprived T51B cells.  相似文献   

17.
Incubation of hamster isolated fat cells with the ionophore A23187 and calcium for 20 minutes caused 30-40% increases in the cyclic 3':5'-nucleotide phosphodiesterase (EC 3.1.4.17) activity of adipocyte homogenates when either 0.6 micron cyclic AMP or 0.6 micron cyclic GMP was the enzyme substrate. The stimulation of adipocyte cyclic AMP phosphodiesterase activity by A23187 and calcium was not antagonized by the adrenergic receptor blocking agents phentolamine and propranolol. The changes in enzyme activity produced by the ionophore and calcium were not associated with elevated intracellular cyclic AMP levels. Furthermore, A23187 and calcium acted to enhance adipocyte phosphodiesterase activity before, but not after, homogenization of the fat cells. These data suggest that the phosphodiesterase activity of hamster isolated fat cells may, at least in part, be regulated by fluctuations in intracellular calcium concentrations.  相似文献   

18.
A hydrolase splitting adenosine (5')triphospho(5')adenosine (Ap3A) and adenosine(5')tetraphospho(5')adenosine (Ap4A) has recently been highly purified from human plasma [Lüthje, J. and Ogilvie, A. (1985) Eur. J. Biochem. 149, 119-127]. This enzyme has been shown to have 5'-nucleotide phosphodiesterase activity (5'-NPD). Three isoenzymes splitting Ap4A and Ap3A were found in human serum by means of native polyacrylamide gel electrophoresis. They exactly comigrated with the 5'-NPD isoenzymes I, III and IV according to published nomenclature, and were designated Ap4Aase isozymes I, III and IV. Their Km values with Ap4A as a substrate were 3 microM, 2 microM and 10 microM, respectively. No Ap4A splitting activity corresponding to 5'-NDP-II was found. Further experiments were designed to prove the identity of Ap4Aases with 5'-NPD isoenzymes. Corresponding isozymes of both activities showed identical behaviour upon delipidation of serum with n-butanol: activities I and III were inactivated, whereas IV remained unaffected. Addition of phosphate stimulated Ap4Aase and 5'-NPD isoenzymes I and III, whereas both activities of isozyme IV were inhibited. Further evidence for the identity was obtained when investigating a series of normal and pathological sera showing decreased as well as increased activities of the single isoenzymes. In all cases Ap4Aase and 5'-NPD isoenzymes showed a linear correlation.  相似文献   

19.
The enzyme 3',5'-nucleotide phosphodiesterase was localized in certain tissues of the planarian Dugesia lugubris (O. Schmidt) by means of ultracytochemical methods. This enzyme was found to be active in epithelium, muscles, nerve tissue and in rhabdite-forming cells. The active enzyme was present at the outer or inner side of the membrane, and even in the cytoplasm. Problems of the ultracytochemical localization of PDE are discussed.  相似文献   

20.
It is not known whether the enzymes 5'-nucleotide phosphodiesterase/nucleotide pyrophosphatase (EC 3.1.4.1/EC 3.6.1.9) catalyze the transfer of nucleotides to acceptors other than water. We have investigated the action of snake venom and bovine intestinal mucosa phosphodiesterases on nucleoside 5'-polyphosphates in the presence of methanol. In those conditions, GTP was converted by snake venom phosphodiesterase to a mixture of GMP and another compound with a different retention time in reverse-phase high-performance liquid chromatography. That compound, by ultraviolet, 1H- and 13C-nuclear magnetic resonance spectroscopic analysis, and by enzyme analysis, was characterized as the methyl ester of GMP (GMP-OMe). The molar fraction [GMP-OMe]/[GMP + GMP-OMe] formed was higher than the molar fraction of methanol as a solvent in reaction mixtures. Similar reactions took place at comparable rates with snake venom and bovine intestinal mucosa phosphodiesterases using several nucleoside 5'-polyphosphates as substrates. The ability of 5'-nucleotide phosphodiesterases to catalyze transfer reactions to a non-water acceptor is relevant to the mechanism of the enzymes, to their use as analytical tools, and to their possible use/role in the preparative/in vivo synthesis of nucleotide esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号