首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
The mei-9 and mus(2)201 mutants of Drosophila melanogaster were identified as mutagen-sensitive mutants on the basis of larval hypersensitivity to methyl methanesulfonate and characterized as excision repair-deficient on the basis of a greatly reduced capacity to excise thymine dimers from cellular DNA. The high degree of larval cytotoxicity observed with a variety of other chemical and physical agents indicated that these mutants may be unable to excise other important classes of DNA adducts. We have measured the ability of the single mutants and the double mutant combination mei-9;mus(2)201 to perform the resynthesis step in excision repair by means of an autoradiographic analysis of unscheduled DNA synthesis (UDS) induced in a mixed population of primary cells in culture. The 3 strains exhibit no detectable UDS activity in response to applied doses of 1.5-6.0 mM methyl methanesulfonate, 1.0-4.5 mM N-methyl-N-nitrosourea or 10-40 J/m2 254-nm UV light, dose ranges in which control cells exhibit a strong dose-dependent UDS response. The mei-9 and mei-9;mus(2)201 mutants also have no detectable UDS response to X-ray doses of 300-1800 rad, whereas the mus(2)201 mutant exhibits a reduced, but dose-dependent, response over this range. These data correlate well with the degree of larval hypersensitivity of the strains and suggest that mutations at both loci block the excision repair of a wide variety of DNA damage prior to the resynthesis step.  相似文献   

2.
Repair-defective mutants of Drosophila melanogaster which identify two major DNA excision repair loci have been examined for their effects on alkylation-induced mutagenesis using the sex-linked recessive lethal assay as a measure of genotoxic endpoint. The alkylating agents (AAs) chosen for comparative analysis were selected on the basis of their reaction kinetics with DNA and included MMS, EMS, MNU, DMN, ENU, DEN and ENNG. Repair-proficient males were treated with the AAs and mated with either excision-defective mei-9L1 or mus(2)201D1 females or appropriate excision-proficient control females. The results of the present work suggest that a qualitative and quantitative relationship exists between the nature and the extent of chemical modification of DNA and the induction of of genetic alterations. The presence of either excision-defective mutant can enhance the frequency of mutation (hypermutability) and this hypermutability can be correlated with the Swain-Scott constant S of specific AAs such that as the SN1 character of the DNA alkylation reaction increases, the difference in response between repair-deficient and repair-proficient females decreases. The order of hypermutability of AAs with mei-9L1 relative to mei-9+ is MMS greater than MNU greater than DMN = EMS greater than iPMS = ENU = DEN = ENNG. When the percentage of lethal mutations induced in mei-9L1 females are plotted against those determined for control females, straight lines of different slopes are obtained. These mei-9L1/mei-9+ indices are: MMS = 7.6, MNU = 5.4, DMN = 2.4, EMS = 2.4 and iPMS = ENU = DEN = ENNG = 1. An identical order of hypermutability with similar indices is obtained for the mus(2)201 mutants: MMS(7.3) greater than MNU (5.4) greater than EMS(2.0) greater than ENU(1.1). Thus, absence of excision repair function has a significant effect on mutation production by AAs efficient in alkylating N-atoms in DNA but no measurable influence on mutation production by AAs most efficient in alkylating O-atoms in DNA. The possible nature of these DNA adducts has been discussed in relation to repair of alkylated DNA. In another series of experiments, the effect on alkylation mutagenesis of mei-9L1 was studied in males, by comparing mutation induction in mei-9L1 males vs. activity in Berlin K (control). Although these experiments suggested the existence of DNA repair in postmeiotic cells during spermatogenesis, no quantitative comparisons could be made.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The repair-deficient mutants mei-9a, mei-41D5, mus101D1, mus104D1 and mus302D1 in Drosophila melanogaster were investigated regarding their effects on spontaneous and X-ray-induced chromosome loss in postmeiotic cells. Each mutant was incorporated singly into XC2, and the ring-X male provided with BSYy+. From matings of males carrying mus101D1, mus302D1 or mei-41D5, mutants identifying a caffeine-sensitive (CAS) postreplication-repair pathway, with corresponding mutant females, and non-mutant males to non-mutant females, overall frequencies of spontaneous partial loss and spontaneous complete loss were significantly increased in each mutant cross except for spontaneous complete loss with mus302 where an increase was noted only in brood 2. Similar findings were noted when males carrying the excision-repair mutant mei-9a were mated with mei-9a females. Males carrying the mutant mus104D1, identifying a caffeine-insensitive (CIS) postreplication-repair pathway, tested with mus104D1 females, produced results that were not significantly different from non-mutant controls. When males were given 3000 rad X-irradiation, frequencies of induced partial loss were significantly higher with mus101D1, mus302D1, mei-41D5 and mei91, and not significantly higher with mus101D1, mus302D1, mei41D5 and mei-9a, and not significantly different from controls with mus104D1. It was suggested that the functional CAS postreplication-repair pathway primarily promotes repair of breaks while an alternative pathway(s) not defined by mus104 promotes misrepair. Therefore, the significant increases in both spontaneous and induced partial loss with the excision-repair-deficient mutant mei-9a suggests the possibility that (a) the excision-repair-pathway may not function in misrepair and (b) the undefined misrepair pathway may be dominant pathway for postreplication repair in Drosophila since mei-9a females presumably have functional postreplication repair and misrepair capacity. The suggestion that the CAS postreplication-repair pathway and the excision-repair pathway function primarily in repair, and an undefined pathway in misrepair is in line with the finding that with mus104D1, no significant increase was found in spontaneous complete loss, but with mus101D1, mus302D1, mei-41D5 and mei-9a significant increases were observed. Results on induced complete loss, with the exception of those with mei-41D5, show a poor correlation with other classes of loss of each of the mutants. Possible explanations for this discrepancy are discussed.  相似文献   

4.
The mus(2)201 locus in Drosophila is defined by two mutant alleles that render homozygous larvae hypersensitive to mutagens. Both alleles confer strong in vivo somatic sensitivity to treatment by methyl methanesulfonate, nitrogen mustard and ultraviolet radiation but only weak hypersensitivity to X-irradiation. Unlike the excision-defective mei-9 mutants identified in previous studies, the mus(2)201 mutants do not affect female fertility and do not appear to influence recombination proficiency or chromosome segregation in female meiocytes.—Three independent biochemical assays reveal that cell cultures derived from embryos homozygous for the mus(2)D1 allele are devoid of detectable excision repair. 1. Such cells quantitatively retain pyrimidine dimers in their DNA for 24 hr following UV exposure. 2. No measurable unscheduled DNA synthesis is induced in mutant cultures by UV treatment. 3. Single-strand DNA breaks, which are associated with normal excision repair after treatment with either UV or N-acetoxy-N-acetyl-2-aminofluorene,* are much reduced in these cultures. Mutant cells possess a normal capacity for postreplication repair and the repair of single-strand breaks induced by X-rays.  相似文献   

5.
Summary Primary cell cultures derived from embryos of a control stock of Drosophila melanogaster respond to ultraviolet light within the first hour after exposure with a decline in thymidine incorporation and a decline in the ability to form newly synthesized (nascent) DNA in long segments. Cells derived from two nonallelic excision-defective mutants (mei-9 and mus201) exhibit the same quantitative decline in both phenomena as do control cells. In contrast, cells from five nonallelic postreplication repair-defective mutants (mei-41, mus101, mus205, mus302 and mus310) respond to ultraviolet light by synthesizing nascent DNA in abnormally short segments. Two of these five mutants (mus302 and mus310) also exhibit unusually low thymidine incorporation levels after irradiation, whereas the other three mutants display the normal depression of incorporation.These results indicate that excision repair does not influence the amount or the length of nascent DNA synthesized in Drosophila cells within the first hour after exposure to ultraviolet light. Of the five mutations that diminish postreplication repair, only two reduce the ability of irradiated cells to synthesize normal amounts of DNA.Abbreviation used UV ultraviolet light — principal wavelength 254 nm  相似文献   

6.
A genetic screen has been developed in Drosophila for identifying host-repair genes responsible for processing DNA lesions formed during mobilization of P transposable elements. Application of that approach to repair deficient mutants has revealed that the mei-41 and mus302 genes are necessary for recovery of P-bearing chromosomes undergoing transposition. Both of these genes are required for normal postreplication repair. Mutants deficient in excision repair, on the other hand, have no detected effect on the repair of transposition-induced lesions. These observations suggest that P element-induced lesions are repaired by a postreplication pathway of DNA repair. The data further support recent studies implicating double-strand DNA breaks as intermediates in P transposition, because the mei-41 gene has been genetically and cytologically associated with the repair of interrupted chromosomes. Analysis of this system has also revealed a striking stimulation of site-specific gene conversion and recombination by P transposition. This result strongly suggests that postreplication repair in this model eukaryote operates through a conversion/recombination mechanism. Our results also support a recently developed model for a conversion-like mechanism of P transposition (Engels et al., 1990). Involvement of the mei-41 and mus302 genes in the repair of P element-induced double-strand breaks and postreplication repair points to a commonality in the mechanisms of these processes.  相似文献   

7.
Preservation of the structural integrity of DNA in any organism is crucial to its health and survival. Such preservation is achieved by an extraordinary cellular arsenal of damage surveillance and repair functions, many of which are now being defined at the gene and protein levels. Mutants hypersensitive to the killing effects of DNA-damaging agents have been instrumental in helping to identify DNA repair-related genes and to elucidate repair mechanisms. In Drosophila melanogaster, such strains are generally referred to as mutagen-sensitive (mus) mutants and currently define more than 30 genetic loci. Whereas most mus mutants have been recovered on the basis of hypersensitivity to the monofunctional alkylating agent methyl methanesulfonate, they nevertheless constitute a phenotypically diverse group, with many mutants having effects beyond mutagen sensitivity. These phenotypes include meiotic dysfunctions, somatic chromosome instabilities, chromatin abnormalities, and cell proliferation defects. Within the last few years numerous mus and other DNA repair-related genes of Drosophila have been molecularly cloned, providing new insights into the functions of these genes. This article outlines strategies for isolating mus mutations and reviews recent advances in the Drosophila DNA repair field, emphasizing mutant analysis and gene cloning.  相似文献   

8.
Drosophila melanogaster ring-X males carrying a double marked Y chromosome, BsYy+, were treated with MMS or DMN and mated with repair-proficient females or the repair-deficient females mei-9a and st. mus302. Frequencies of induced complete loss (principally the ring-X) and partial losses of the Y chromosome (loss of Bs or Y+) decreased in the sequence st must302 greater than mei-9a greater than repair-proficient females agreeing with the sequence obtained previously with procarbazine and DEN. With MMS and DMN, some 30-40% or more or partial Y chromosome losses are mosaics from mei-9a and only 0.4% from st mus302 females and a delay in mei-9a females. Similar findings with procarbazine and DEN are indicated. That the higher sensitivity of st mus302 relative to mei-9a results from impairments in both postreplication and excision repair in the former remains to be determined.  相似文献   

9.
The article is devoted to the study of the role of intracellular mechanisms in the formation of radiation-induced genetic instability and its transgenerational effect in cells of different tissues of the descendants of Drosophila melanogaster mutant strains whose parents were exposed to chronic radiation (0.42 and 3.5 mGy/h). The level of DNA damage (alkali-labile sites (ALS), single-strand (SSB) and double-strand (DSB) breaks) in cells of somatic (nerve ganglia, imaginal discs) and generative (testis) tissues from directly irradiated animals and their unirradiated offspring was evaluated. Confident transgenerational instability (on the level of ALSs and SSBs), observed only in somatic tissues and only at the higher dose rate, is characteristic for mus209 mutant strains defective in excision repair and, less often, for mus205 and mus210 mutant strains. The greatest manifestation of radiation-induced genetic instability was found in evaluating the DSBs. Dysfunction of the genes mus205, mus304, mei-9 and mei-41, which are responsible for postreplicative repair, excision repair, recombination and control of the cell cycle, affects transgenerational changes in the somatic tissues of the offspring of parents irradiated in both low and high dose rates. In germ cells, the key role in maintaining genetic stability under chronic irradiation is played by the non-recombination postreplication repair mus101 gene. We revealed the tissue specificity of the radiation-induced effects, transgenerational transmission and accumulation of DNA damage to descendants of chronically irradiated animals.  相似文献   

10.
Mutagen sensitive strains (mus) in Drosophila are known for their hypersensitivity to mutagens and environmental carcinogens. Accordingly, these mutants were grouped in pre- and post-replication repair pathways. However, studying mutants belonging to one particular repair pathway may not be adequate for examining chemical-induced genotoxicity when other repair pathways may neutralize its effect. To test whether both pre-and post-replication pathways are involved and effect of Cr(III)- and Cr(VI)-induced genotoxicity in absence or presence of others, we used double mutant approach in D. melanogaster. We observed DNA damage as evident by changes in Comet assay DNA migration in cells of larvae of Oregon R(+) and single mutants of pre- (mei-9, mus201 and mus210) and post- (mei-41, mus209 and mus309) replication repair pathways and also in double mutants of different combinations (pre-pre, pre-post and post-post replication repair) exposed to increasing concentrations of Cr(VI) (0.0, 5.0, 10.0 and 20.0 μg/ml) for 48 h. The damage was greater in pre-replication repair mutants after exposure to 5.0 μg/ml Cr(VI), while effects on Oregon R(+) and post replication repair mutants were insignificant. Post-replication repair mutants revealed significant DNA damage after exposure to 20.0 μg/ml Cr(VI). Further, double mutants generated in the above repair categories were examined for DNA damage following Cr(VI) exposure and a comparison of damage was studied between single and double mutants. Combinations of double mutants generated in the pre-pre replication repair pathways showed an indifferent interaction between the two mutants after Cr(VI) exposure while a synergistic interaction was evident in exposed post-post replication repair double mutants. Cr(III) (20.0 μg/ml) exposure to these strains did not induce any significant DNA damage in their cells. The study suggests that both pre- and post-replication pathways are affected in Drosophila by Cr(VI) leading to genotoxicity, which may have consequences for metal-induced carcinogenesis.  相似文献   

11.
6 mutant alleles of the mei-41 locus in Drosophila melanogaster are shown to cause hypersensitivity to hydroxyurea in larvae. The strength of that sensitivity is directly correlated with the influence of the mutant alleles on meiosis in that: alleles exhibiting a strong meiotic effect (mei-41D2, mei-41D5, mei-41D7) are highly sensitive; alleles with negligible meiotic effects (mei-41(104)D1, mei-41(104)D2) are moderately sensitive and an allele which expresses meiotic effects only under restricted conditions (mei-41D9) has an intermediate sensitivity. This sensitivity is not a general feature of strong postreplication repair-deficient mutants, because mutants with that phenotype from other loci do not exhibit sensitivity (mus(2)205A1, mus(3)302D1, mus(3)310D1). The observed lethality is not due to hypersensitivity of DNA synthesis in mei-41 larvae to hydroxyurea as assayed by tritiated thymidine incorporation. Lethality is, however, potentially attributable to an abnormal enhancement of chromosomal aberrations by hydroxyurea in mutant mei-41 larvae. Both in vivo and in vitro exposure of neuroblast cells to hydroxyurea results in an increase in 3 types of aberrations which is several fold higher in mei-41 tissue. Since hydroxyurea disrupts DNA synthesis, these results further implicate the mei-41 locus in DNA metabolism and provide an additional tool for an elucidation of its function. The possible existence of additional genes of this nature is suggested by a more modest sensitivity to hydroxyurea which has been detected in two stocks carrying mutagen-sensitive alleles of alternate genes.  相似文献   

12.
To check the possibilities of the recently developed comet assay, to be used in mechanistic studies in Drosophila melanogaster, neuroblast cells of third instar larvae are used to analyse in vivo, the effect of two repair deficient mutations: mus201, deficient on nucleotide excision repair, and mus308, deficient in a mechanism of damage bypass, on the genotoxicity of methyl methanesulphonate (MMS), ethyl methanesulphonate (EMS) and N-ethyl-N-nitrosourea (ENU). The obtained results reveal: (1) MMS-induced breaks are most probably consequence of N-alkylation damage mediated abasic (AP) site breakage; (2) MMS and at least part of the EMS induced damage leading to DNA strand breaks are efficiently repaired by the nucleotide excision repair mechanism; (3) ENU and part of EMS induced damage need a functional Mus308 protein to be processed, otherwise they can lead to DNA strand breaks. In addition, the results of this work confirm the validity of neuroblast cells to conduct the comet assay, and the usefulness of this assay in in vivo mechanistic studies related to DNA repair in D. melanogaster.  相似文献   

13.
mus301 was identified independently in two genetic screens, one for mutants hypersensitive to chemical mutagens and another for maternal mutants with eggshell defects. mus301 is required for the proper specification of the oocyte and for progression through meiosis in the Drosophila ovary. We have cloned mus301 and show that it is a member of the Mus308 subfamily of ATP-dependent helicases and the closest homolog of human and mouse HEL308. Functional analyses demonstrate that Mus301 is involved in chromosome segregation in meiosis and in the repair of double-strand-DNA breaks in both meiotic and mitotic cells. Most of the oogenesis defects of mus301 mutants are suppressed by mutants in the checkpoint kinase Mei41 and in MeiW68, the Spo11 homolog that is thought to generate the dsDNA breaks that initiate recombination, indicating that these phenotypes are caused by activation of the DNA damage checkpoint in response to unrepaired Mei-W68-induced dsDNA breaks. However, neither mei-W68 nor mei-41 rescue the defects in oocyte specification of mus301 mutants, suggesting that this helicase has another function in oocyte selection that is independent from its role in meiotic recombination.  相似文献   

14.
Nucleotide excision repair (NER) is the primary pathway for the removal of ultraviolet light-induced damage and bulky adducts from DNA in eukaryotes. During NER, the helix is unwound around the damaged site, and incisions are made on the 5' and 3' sides, to release an oligonucleotide carrying the lesion. Repair synthesis can then proceed, using the intact strand as a template. The incisions flanking the lesion are catalyzed by different structure-specific endonucleases. The 5' incision is made by a heterodimer of XPF and ERCC1 (Rad1p-Rad10p in Saccharomyces cerevisiae), and the 3' incision is made by XPG (Rad2p in S. cerevisiae). We previously showed that the Drosophila XPF homologue is encoded by the meiotic recombination gene mei-9. We report here the identification of the genes encoding the XPG and ERCC1 homologues (XPG(Dm) and ERCC1(Dm)). XPG(Dm) is encoded by the mus201 gene; we found frameshift mutations predicted to produce truncated XPG(Dm) proteins in each of two mus201 alleles. These mutations cause defects in nucleotide excision repair and hypersensitivity to alkylating agents and ultraviolet light, but do not cause hypersensitivity to ionizing radiation and do not impair viability or fertility. ERCC1(Dm) interacts strongly in a yeast two-hybrid assay with MEI-9, indicative of the presumed requirement for these polypeptides to dimerize to form the functional endonuclease. The Drosophila Ercc1 gene maps to polytene region 51D1-2. The nucleotide excision repair gene mus210 maps nearby (51E-F) but is distinct from Ercc1.  相似文献   

15.
Defects in nucleotide excision repair (NER) as defined by the UV sensitivity of xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD) patients has lead to the identification of most of the genes involved: XPA through XPG, CSA and CSB. Whereas XP patients often show an increased risk for skin cancer after exposure to sunlight, this is not the case for patients with CS and TTD. Several CS patients have been shown to carry a defect in the XPG gene. The XPG, a structure specific endonuclease makes the incision 3' of damage and is also involved in the subsequent 5'incision during the NER process. In addition, XPG plays a role in the removal of oxidative DNA damage. The Drosophila XPG gene was isolated and based on the molecular defect of a spontaneous (insertion) and an EMS induced mutant, it was shown that a mutated XPG is responsible for the Drosophila mutagen-sensitive mutants mus201. One of these mutants, mus201(D1) has been used extensively in studies of the effects and mechanisms of many chemical mutagens as well as X-rays. The results of these studies are discussed in the light of the finding that mus201p is the Drosophila homologue of XPG.  相似文献   

16.
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is activated by binding to DNA breaks induced by ionizing radiation or through repair of altered bases in DNA by base excision repair. Mice lacking PARP-1 and, in certain cases, the cells derived from these mice exhibit hypersensitivity to ionizing radiation and alkylating agents. In this study we investigated base excision repair in cells lacking PARP-1 in order to elucidate whether their augmented sensitivity to DNA damaging agents is due to an impairment of the base excision repair pathway. Extracts prepared from wild-type cells or cells lacking PARP-1 were similar in their ability to repair plasmid DNA damaged by either X-rays (single-strand DNA breaks) or by N-methyl-N′-nitro-N-nitrosoguanidine (methylated bases). In addition, we demonstrated in vivo that PARP-1-deficient cells treated with N-methyl-N′-nitro-N-nitrosoguanidine repaired their genomic DNA as efficiently as wild-type cells. Therefore, we conclude that cells lacking PARP-1 have a normal capacity to repair single-strand DNA breaks inflicted by X-irradiation or breaks formed during the repair of modified bases. We propose that the hypersensitivity of PARP-1 null mutant cells to γ-irradiation and alkylating agents is not directly due to a defect in DNA repair itself, but rather results from greatly reduced poly(ADP-ribose) formation during base excision repair in these cells.  相似文献   

17.
T Miyamoto 《Mutation research》1990,243(3):207-212
The yield of spontaneous Minute mutations was recorded in the F1 progeny of interstrain (reciprocal) and intrastrain matings between a recombination- and excision repair-defective mei-9L1 (mei-9) strain and the y w m f/sc8(y+) Y BS; dp (ywmf-2) strain of Drosophila melanogaster. As a comparison, interstrain matings between a postreplication repair-defective st mus(3)302D1 (mus(3)) strain and the ywmf-2 strain were also studied for Minute mutations. The results show that: (1) a strikingly high frequency of Minute mutations is observed in the progeny of mei-9 female X ywmf-2 male crosses, but not in that of ywmf-2 females X mei-9 males; (2) no such difference exists in the progeny of intrastrain matings; and (3) there exists no marked inequality of Minute frequencies in the progeny of reciprocal crosses of mus(3) and ywmf-2 strains.  相似文献   

18.
We have directly compared in resting human mononuclear leukocytes the DNA repair effects caused by ADP-ribosyl transferase (ADPRT) activity following DNA damage induction by gamma radiation, UV radiation, ethylene oxide (EO) and N-acetoxy-2-acetylaminofluorene (NA-AAF). The presence of inhibitors of ADPRT during the quantitation of unscheduled DNA synthesis (UDS) resulted in about a 2-fold increase of UDS when induced by gamma radiation, UV radiation or EO. The stimulation of UDS by EO, UV- or gamma-radiation in the presence of an ADPRT inhibitor was equally strong whether 1 mM or 10 mM hydroxyurea was used to suppress scheduled DNA synthesis. The level of NA-AAF induced UDS was not affected by inhibitors of ADPRT. In addition, direct estimation of ADPRT activity revealed that at doses giving maximal UDS, NA-AAF damage did not induce a measurable enzymatic activity whereas gamma-radiation, UV radiation and EO all showed a significant dose response increase. We have interpreted our data to mean that NA-AAF induced UDS estimates DNA repair relating mainly to DNA lesions that are recognized with difficulty, and hence, the rate of endonuclease-induced DNA strand break accumulation is not sufficient to allow a stimulation of ADPRT and affect the quantitation of UDS.  相似文献   

19.
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.  相似文献   

20.
MEI-9 is the Drosophila homolog of the human structure-specific DNA endonuclease XPF. Like XPF, MEI-9 functions in nucleotide excision repair and interstrand crosslink repair. MEI-9 is also required to generate meiotic crossovers, in a function thought to be associated with resolution of Holliday junction intermediates. We report here the identification of MUS312, a protein that physically interacts with MEI-9. We show that mutations in mus312 elicit a meiotic phenotype identical to that of mei-9 mutants. A missense mutation in mei-9 that disrupts the MEI-9-MUS312 interaction abolishes the meiotic function of mei-9 but does not affect the DNA repair functions of mei-9. We propose that MUS312 facilitates resolution of meiotic Holliday junction intermediates by MEI-9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号