共查询到20条相似文献,搜索用时 15 毫秒
1.
V.M. Sorokin N.V. Pavlovich L.A. Prozorova 《FEMS immunology and medical microbiology》1996,13(3):249-252
Abstract Lipopolysaccharide and outer membranes from the three virulent encapsulated (Cap+ ) strains of three subspecies of Francisella tularensis and their isogenic avirulent capsule-deficient (Cap− ) mutants were isolated. It was shown that the Cap− cells and their outer membranes almost completely consumed the available complement of normal human serum whereas Cap− LPS (R-LPS), Cap+ cells and their components activated the complement less effectively. Absorption of normal human serum with Cap− strain dramatically reduced the complement consumption for homologous strain and its surface structures. This reduction reflected the loss of bactericidal antibodies. Addition of antibodies to whole cells of F. tularensis completely restored complement activity. The cross-absorbing experiments demonstrated that Cap− cells more effectively deplete bactericidal antibodies than homologous virulent strain. From these results it can be concluded that normal human serum is bactericidal for serum-sensitive Cap− F. tularensis strains through the action of complement initiated by the classical complement pathway and serum resistance of virulent strains is not due to absence of targets for bactericidal antibodies, but is due to their low accessibility because of O-side chains of lipopolysaccharide. 相似文献
2.
3.
4.
Francisella tularensis is a gram-negative coccobacillus that is capable of causing severe, fatal disease in a number of mammalian species, including humans. Little is known about the proteins that are surface exposed on the outer membrane (OM) of F. tularensis, yet identification of such proteins is potentially fundamental to understanding the initial infection process, intracellular survival, virulence, immune evasion and, ultimately, vaccine development. To facilitate the identification of putative F. tularensis outer membrane proteins (OMPs), the genomes of both the type A strain (Schu S4) and type B strain (LVS) were subjected to six bioinformatic analyses for OMP signatures. Compilation of the bioinformatic predictions highlighted 16 putative OMPs, which were cloned and expressed for the generation of polyclonal antisera. Total membranes were extracted from both Schu S4 and LVS by spheroplasting and osmotic lysis, followed by sucrose density gradient centrifugation, which separated OMs from cytoplasmic (inner) membrane and other cellular compartments. Validation of OM separation and enrichment was confirmed by probing sucrose gradient fractions with antibodies to putative OMPs and inner membrane proteins. F. tularensis OMs typically migrated in sucrose gradients between densities of 1.17 and 1.20 g/ml, which differed from densities typically observed for other gram-negative bacteria (1.21 to 1.24 g/ml). Finally, the identities of immunogenic proteins were determined by separation on two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometric analysis. This is the first report of a direct method for F. tularensis OM isolation that, in combination with computational predictions, offers a more comprehensive approach for the characterization of F. tularensis OMPs. 相似文献
5.
Reilly TJ Felts RL Henzl MT Calcutt MJ Tanner JJ 《Protein expression and purification》2006,45(1):132-141
Francisella tularensis is the etiologic agent of the potentially fatal human disease tularemia and is capable of survival and multiplication within professional phagocytes of the host. While the mechanisms that allow intracellular survival of the bacterium are only now beginning to be elucidated at the molecular level, previous work demonstrated that F. tularensis produces copious levels of an acid phosphatase which in crude and purified form affected the dose-dependent abrogation of the respiratory burst of stimulated neutrophils. The work presented here was undertaken to provide a source of recombinant F. tularensis acid phosphatase for detailed biochemical, biological, and structural studies. Results from this work are consistent with the ability to generate milligram amounts of recombinant enzyme whose attributes are demonstrably equivalent to those of the native enzyme. Such properties include molecular mass, broad substrate specificity, sensitivity and resistance to various inhibitors, pH optimum, and reactivity with rabbit polyclonal antibody to the native enzyme. 相似文献
6.
Investigation of ability of Francisella tularensis S- and R-lypopolysaccharide (LPS) preparations as well as the live bacteria with different chemotypes to interact with human lypopolysaccharide-binding protein (LBP) was carried out. It was found that LPS preparations derived from virulent(S-LPS) or isogenic avirulent mutant (R-LPS) strains of F. tularensis had markedly lower affinity to LBP as compared with typical S-LPS of Salmonella abortus and R-LPS of Yersinia pestis. It was shown that R-LPS preparation from avirulent mutant binds LPB more effectively than S-LPS from F. tularensis virulent strain. Differences in S- and R-LPS affinity were also confirmed for LPS represented by the live cells. Thus, bacteria with S-chemotype of LPS (F. tularensis 15/10) bound only 20.3% of LBP, whereas cells with R-LPS (F. tularensis 543 cap(-)) bound 39.9%. Such pattern was observed in experiments with both normal non-immune human serum and sera from people immunized with live tularemia vaccine. The latter indicates that opsonization of LPS by specific antibodies does not change its affinity to LBP. The observed more efficient binding of avirulent strain R-LPS to LBP is likely determines the more intensive host response directed to destruction and rapid elimination of the causative agent. At the same time, weak affinity of the vaccine and virulent strains S-LPS to LBP probably allows the bacterium to avoid activation of host defense mechanisms thus contributing to its long-term persistence in microorganism and development of specific immunity against tularemia. 相似文献
7.
Horzempa J Tarwacki DM Carlson PE Robinson CM Nau GJ 《Applied and environmental microbiology》2008,74(7):2161-2170
Francisella tularensis, the causative agent of tularemia, is a category A biodefense agent. The examination of gene function in this organism is limited due to the lack of available controllable promoters. Here, we identify a promoter element of F. tularensis LVS that is repressed by glucose (termed the Francisella glucose-repressible promoter, or FGRp), allowing the management of downstream gene expression. In bacteria cultured in medium lacking glucose, this promoter induced the expression of a red fluorescent protein allele, tdtomato. FGRp activity was used to produce antisense RNA of iglC, an important virulence factor, which severely reduced IglC protein levels. Cultivation in glucose-containing medium restored IglC levels, indicating the usefulness of this promoter for controlling both exogenous and chromosomal gene expression. Moreover, FGRp was shown to be active during the infection of human macrophages by using the fluorescence reporter. In this environment, the FGRp-mediated expression of antisense iglC by F. tularensis LVS resulted in reduced bacterial fitness, demonstrating the applicability of this promoter. An analysis of the genomic sequence indicated that this promoter region controls a gene, FTL_0580, encoding a hypothetical protein. A deletion analysis determined the critical sites essential for FGRp activity to be located within a 44-bp region. This is the first report of a conditional promoter and the use of antisense constructs in F. tularensis, valuable genetic tools for studying gene function both in vitro and in vivo. 相似文献
8.
Mia D. Champion Qiandong Zeng Eli B. Nix Francis E. Nano Paul Keim Chinnappa D. Kodira Mark Borowsky Sarah Young Michael Koehrsen Reinhard Engels Matthew Pearson Clint Howarth Lisa Larson Jared White Lucia Alvarado Mats Forsman Scott W. Bearden Anders Sj?stedt Richard Titball Stephen L. Michell Bruce Birren James Galagan 《PLoS pathogens》2009,5(5)
Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria. 相似文献
9.
Tara Wahab Dawn N. Birdsell Marika Hjertqvist Cedar L. Mitchell David M. Wagner Paul S. Keim Ingela Hedenstr?m Sven L?fdahl 《PloS one》2014,9(11)
Tularaemia, caused by the bacterium Francisella tularensis, is endemic in Sweden and is poorly understood. The aim of this study was to evaluate the effectiveness of three different genetic typing systems to link a genetic type to the source and place of tularemia infection in Sweden. Canonical single nucleotide polymorphisms (canSNPs), MLVA including five variable number of tandem repeat loci and PmeI-PFGE were tested on 127 F. tularensis positive specimens collected from Swedish case-patients. All three typing methods identified two major genetic groups with near-perfect agreement. Higher genetic resolution was obtained with canSNP and MLVA compared to PFGE; F. tularensis samples were first assigned into ten phylogroups based on canSNPs followed by 33 unique MLVA types. Phylogroups were geographically analysed to reveal complex phylogeographic patterns in Sweden. The extensive phylogenetic diversity found within individual counties posed a challenge to linking specific genetic types with specific geographic locations. Despite this, a single phylogroup (B.22), defined by a SNP marker specific to a lone Swedish sequenced strain, did link genetic type with a likely geographic place. This result suggests that SNP markers, highly specific to a particular reference genome, may be found most frequently among samples recovered from the same location where the reference genome originated. This insight compels us to consider whole-genome sequencing (WGS) as the appropriate tool for effectively linking specific genetic type to geography. Comparing the WGS of an unknown sample to WGS databases of archived Swedish strains maximizes the likelihood of revealing those rare geographically informative SNPs. 相似文献
10.
Nübel U Reissbrodt R Weller A Grunow R Porsch-Ozcürümez M Tomaso H Hofer E Splettstoesser W Finke EJ Tschäpe H Witte W 《Journal of bacteriology》2006,188(14):5319-5324
We have sequenced fragments of five metabolic housekeeping genes and two genes encoding outer membrane proteins from 81 isolates of Francisella tularensis, representing all four subspecies. Phylogenetic clustering of gene sequences from F. tularensis subsp. tularensis and F. tularensis subsp. holarctica aligned well with subspecies affiliations. In contrast, F. tularensis subsp. novicida and F. tularensis subsp. mediasiatica were indicated to be phylogenetically incoherent taxa. Incongruent gene trees and mosaic structures of housekeeping genes provided evidence for genetic recombination in F. tularensis. 相似文献
11.
Tae-Hyun Kim Shite Sebastian Jessica T. Pinkham Robin A. Ross LeeAnn T. Blalock Dennis L. Kasper 《The Journal of biological chemistry》2010,285(36):27839-27849
The O-antigen polymerase of Gram-negative bacteria has been difficult to characterize. Herein we report the biochemical and functional characterization of the protein product (Wzy) of the gene annotated as the putative O-antigen polymerase, which is located in the O-antigen biosynthetic locus of Francisella tularensis. In silico analysis (homology searching, hydropathy plotting, and codon usage assessment) strongly suggested that Wzy is an O-antigen polymerase whose function is to catalyze the addition of newly synthesized O-antigen repeating units to a glycolipid consisting of lipid A, inner core polysaccharide, and one repeating unit of the O-polysaccharide (O-PS). To characterize the function of the Wzy protein, a non-polar deletion mutant of wzy was generated by allelic replacement, and the banding pattern of O-PS was observed by immunoblot analysis of whole-cell lysates obtained by SDS-PAGE and stained with an O-PS-specific monoclonal antibody. These immunoblot analyses showed that O-PS of the wzy mutant expresses only one repeating unit of O-antigen. Further biochemical characterization of the subcellular fractions of the wzy mutant demonstrated that (as is characteristic of O-antigen polymerase mutants) the low molecular weight O-antigen accumulates in the periplasm of the mutant. Site-directed mutagenesis based on protein homology and topology, which was carried out to locate a catalytic residue of the protein, showed that modification of specific residues (Gly176, Asp177, Gly323, and Tyr324) leads to a loss of O-PS polymerization. Topology models indicate that these amino acids most likely lie in close proximity on the bacterial surface. 相似文献
12.
Sheenkov NV Opochinskiĭ EF Valyshev AV Valysheva IV Kartashova OL Parshina AV Bukharin OV 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》2006,(1):63-66
The study of the persistence potential of 64 F. tularensis strains isolated from different sources was carried out. The wide spread of the antilysozyme, antilactoferrin and anticomplementory activities of F. tularensis were detected. F. tularensis, isolated from ticks and water, were characterized by the highest level of the expression of antilysozyme activity, while anticomplementory and antilactoferrin activities of the infective agents were characteristic of those microorganisms which were isolated from rodents and their excrements. 相似文献
13.
14.
Romanova LV Mishan'kin BN Pichurina NL Vodop'ianov SO Saiamov SR 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》2000,(2):11-15
Conditions for the appearance of F. tularensis uncultivated forms and for their reversion into the initial state have been studied. As revealed in this study, the combined influence of stress factors (starvation and low temperature) may result in the transition of F. tularensis into the uncultivated state in which it persists in the environment during the period between epidemics. The reversion of F. tularensis uncultivated forms into the initial state has been carried out with the use of sensitive animals. The uncultivated state of F. tularensis should be regarded as the actual form of the existence of the causative agent of tularemia in soil and water ecosystems. 相似文献
15.
Aims: To determine the range of free available chlorine (FAC) required for disinfection of the live vaccine strain (LVS) and wild‐type strains of Francisella tularensis. Methods and Results: Seven strains of planktonic F. tularensis were exposed to 0·5 mg·l?1 FAC for two pH values, 7 and 8, at 5 and 25°C. LVS was inactivated 2 to 4 times more quickly than any of the wild‐type F. tularensis strains at pH 8 and 5°C. Conclusions: Free available chlorine residual concentrations routinely maintained in drinking water distribution systems would require up to two hours to reduce all F. tularensis strains by 4 log10. LVS was inactivated most quickly of the tested strains. Significance and Impact of the Study: This work provides contact time (CT) values that are useful for drinking water risk assessment and also suggests that LVS may not be a good surrogate in disinfection studies. 相似文献
16.
17.
Thomas RM Twine SM Fulton KM Tessier L Kilmury SL Ding W Harmer N Michell SL Oyston PC Titball RW Prior JL 《Journal of bacteriology》2011,193(19):5498-5509
In Francisella tularensis subsp. tularensis, DsbA has been shown to be an essential virulence factor and has been observed to migrate to multiple protein spots on two-dimensional electrophoresis gels. In this work, we show that the protein is modified with a 1,156-Da glycan moiety in O-linkage. The results of mass spectrometry studies suggest that the glycan is a hexasaccharide, comprised of N-acetylhexosamines, hexoses, and an unknown monosaccharide. Disruption of two genes within the FTT0789-FTT0800 putative polysaccharide locus, including a galE homologue (FTT0791) and a putative glycosyltransferase (FTT0798), resulted in loss of glycan modification of DsbA. The F. tularensis subsp. tularensis ΔFTT0798 and ΔFTT0791::Cm mutants remained virulent in the murine model of subcutaneous tularemia. This indicates that glycosylation of DsbA does not play a major role in virulence under these conditions. This is the first report of the detailed characterization of the DsbA glycan and putative role of the FTT0789-FTT0800 gene cluster in glycan biosynthesis. 相似文献
18.
The comparative study of the specificity of antibodies in human sera after tularemia infection and immunization with live tularemia infection was carried out with the use of passive hemagglutination and immunoblotting techniques. The sera of tularemia patients contained two different types of immunoglobulins: strictly specific to the antigenic epitopes of F. tularensis Iipopolysaccharide (LPS) and strictly specific to F. tularensis subsp. novicida LPS. Such phenomenon may be due to phase variations of the antigenic structure of F. tularensis LPS in the body of a slightly susceptible host. The immune sera of vaccinated were found to contain antibodies, strictly specific only to F. tularensis LPS. At the same time in one vaccinee by the presence of pronounced postvaccinal reactions was found sharply defined interaction between serum imunoglobulins and F. tularensis subsp. novicida LPS. As the result, the data on the possibility of the antigenic modification of F. tularensis in tularemia infection in humans were obtained. At the same time antigenic epitopes, characteristic of faintly pathogenic and closely related F. tularensis novicida LPS, appeared in the structure of F. tularensis LPS. 相似文献
19.
Svensson K Larsson P Johansson D Byström M Forsman M Johansson A 《Journal of bacteriology》2005,187(11):3903-3908
Analysis of unidirectional genomic deletion events and single nucleotide variations suggested that the four subspecies of Francisella tularensis have evolved by vertical descent. The analysis indicated an evolutionary scenario where the highly virulent F. tularensis subsp. tularensis (type A) appeared before the less virulent F. tularensis subsp. holarctica (type B). Compared to their virulent progenitors, attenuated strains of F. tularensis exhibited specific unidirectional gene losses. 相似文献
20.
I Ia Cherepakhina V N Kozlovski? E A Efanova A S Novokhatski? L P Alekseeva V V Sukhar' L A Prozorova L V Larionova V M Sorokin L K Lysova 《Mikrobiologicheekij zhurnal》1990,52(2):89-93
The use of different schemes of albino mice immunization either by living or by killed preparations of the vaccine strain of Francisella tularensis when obtaining monoclonal antibodies to the tularemia microbe made it possible to reveal definite regularities in the dynamics of antibody formation. The highest titres of antibodies in sera of animals-donors of splenocytes were obtained during the daily (for 3 days) intraperitoneal immunization of mice with living vaccine or with its thrice administration to the spleen thrice with the interval of 10 days. Revaccination against a background of high titres of antibodies decreased their quantity in blood serum of mice, while that against a background of low titres increased them. 相似文献