首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims:  Screening and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from Kimchi, a traditional Korean fermented vegetable.
Methods and Results:  A total of 1000 lactic acid bacteria were isolated from various Kimchi samples and screened for the production of bacteriocin. Pediocin K23-2, a bacteriocin produced by the Pediococcus pentosaceus K23-2 strain, showed strong inhibitory activity against Listeria monocytogenes . The bacteriocin activity remained unchanged after 15 min of heat treatment at 121°C or exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. The bacteriocin was maximally produced at 37°C, when the pH of the culture broth was maintained at 5·0 during the fermentation, although the optimum pH for growth was 7·0. The molecular weight of the bacteriocin was about 5 kDa according to a tricine SDS-PAGE analysis.
Conclusions:  Pediococcus pentosaceus K23-2 isolated from Kimchi produces a bacteriocin, which shares similar characteristics to the Class IIa bacteriocins. The bacteriocin is heat stable and shows wide antimicrobial activity against Gram-positive bacteria, especially L. monocytogenes .
Significance and Impact of the Study:  Pediocin K23-2 and pediocin K23-2-producing P. pentosaceus K23-2 could potentially be used in the food and feed industries as natural biopreservatives, and for probiotic application to humans or livestock.  相似文献   

2.
An antimicrobial peptide designated pediocin AcH was isolated from Pediococcus acidilactici strain H. The pediocin AcH was purified by ion exchange chromatography. The molecular weight of pediocin AcH was determined by SDS-PAGE to be about 2700 daltons. Pediocin AcH was sensitive to proteolytic enzymes, resistant to heat and organic solvents, and active over a wide range of pH. Pediocin AcH exhibited inhibition against several food spoilage bacteria and foodborne pathogens including Staphylococcus aureus, Clostridium perfringens and Listeria monocytogenes. It was bactericidal to sensitive cells and acted very rapidly. The bactericidal effect was not produced by either cell lysis or apparent loss of membrane permeability.  相似文献   

3.
An antimicrobial peptide designated pediocin AcH was isolated from Pediococcus acidilactici strain H. The pediocin AcH was purified by ion exchange chromatography. The molecular weight of pediocin AcH was determined by SDS-PAGE to be about 2700 daltons. Pediocin AcH was sensitive to proteolytic enzymes resistant to heat and organic solvents, and active over a wide range of pH. Pediocin AcH exhibited inhibition against several food spoilage bacteria and foodborne pathogens including Staphylococcus aureus, Clostridium perfringens and Listeria monocytogenes. It was bactericidal to sensitive cells and acted very rapidly. The bactericidal effect was not produced by either cell lysis or apparent loss of membrane permeability.  相似文献   

4.
Fermentation broths of Pediococcus acidilactici NRRL B5627 exhibited a certain antimicrobial activity due to a bacteriocin produced during early growth and until the stationary phase of growth was reached (at optimum of 60% dissolved oxygen saturation). Its size was determined by electrospray ionization mass spectrometric analysis as 3.660 kDa. N-terminal sequencing showed that the bacteriocin had 19 amino acid residues in the order KYYGXNGVXTXGKHSXVDX. The purified bacteriocin is similar to pediocins isolated by various Pediococci and therefore, it belongs to the class IIa of bacteriocins and is thus designated pediocin SA-1. Sensitivity of the purified pediocin to various storage temperatures and enzyme treatments was examined. Purified pediocin SA-1 is heat stable for up to 60 min at 121 °C. Pediocin SA-1 is inhibitory to several food-borne pathogens and food spoilage bacteria. It appears to be significantly more effective against Listeria spp. compared to pediocin PD-1 produced by P. damnosus. The mode of action of the purified bacteriocin appears to be bactericidal.  相似文献   

5.
Expression of lactococcin A and pediocin PA-1 in heterologous hosts   总被引:4,自引:1,他引:3  
Pediocin PA-1 production, immunity and secretion are specified by a cluster of four genes in Pediococcus acidilactici PAC1.0. The production by, secretion of, and immunity to lactococcin A of Lactococcus lactis are also determined by four genes. Here, expression of the pediocin operon in Lactococcus lactis is reported, which could only be achieved by placing it under control of a lactococcal promoter. Expression of the lactococcin A operon in Pediococcus is also described: recombinant clones of Pediococcus were obtained that produced and secreted both active pediocin PA-1 and lactococcin A.  相似文献   

6.
Lactobacillus plantarum 423, isolated from sorghum beer, produces a bacteriocin (plantaricin 423) which is inhibitory to several food spoilage bacteria and food-borne pathogens, including Bacillus cereus , Clostridium sporogenes , Enterococcus faecalis , Listeria spp. and Staphylococcus spp. Plantaricin 423 is resistant to treatment at 80 °C, but loses 50% of its activity after 60 min at 100 °C and 75% of its activity after autoclaving (121 °C, 15 min). Plantaricin 423 remains active after incubation at pH 1–10 and is inactivated when treated with pepsin, papain, α-chymotrypsin, trypsin and Proteinase K. Plantaricin 423 was partially purified and its size estimated at 3·5 kDa, as determined by tricine-SDS-PAGE. The mechanism of activity of plantaricin 423 is weakly bactericidal, as determined against Oenococcus oeni (previously Leuconostoc oenos ). High DNA homology was obtained between the plasmid DNA of strain 423 and the pediocin PA-1 operon of Pediococcus acidilactici PAC 1·0, suggesting that plantaricin 423 is plasmid-encoded and related to the pediocin gene cluster.  相似文献   

7.
Pediocin PA-1 is a member of the class IIa bacteriocins, which show antimicrobial effects against lactic acid bacteria. To develop an improved version of pediocin PA-1, reciprocal chimeras between pediocin PA-1 and enterocin A, another class IIa bacteriocin, were constructed. Chimera EP, which consisted of the C-terminal half of pediocin PA-1 fused to the N-terminal half of enterocin A, showed increased activity against a strain of Leuconostoc lactis isolated from a sour-spoiled dairy product. To develop an even more effective version of this chimera, a DNA-shuffling library was constructed, wherein four specific regions within the N-terminal half of pediocin PA-1 were shuffled with the corresponding sequences from 10 other class IIa bacteriocins. Activity screening indicated that 63 out of 280 shuffled mutants had antimicrobial activity. A colony overlay activity assay showed that one of the mutants (designated B1) produced a >7.8-mm growth inhibition circle on L. lactis, whereas the parent pediocin PA-1 did not produce any circle. Furthermore, the active shuffled mutants showed increased activity against various species of Lactobacillus, Pediococcus, and Carnobacterium. Sequence analysis revealed that the active mutants had novel N-terminal sequences; in active mutant B1, for example, the parental pediocin PA-1 sequence (KYYGNGVTCGKHSC) was changed to TKYYGNGVSCTKSGC. These new and improved DNA-shuffled bacteriocins could prove useful as food additives for inhibiting sour spoilage of dairy products.  相似文献   

8.
The objective of this study was to investigate the effect of pediocin A in in vitro caecal fermentations. Pediococcus pentosaceus FBB61, pediocin A producer (bac +) and its isogenic mutant (bac—) Ped. pentosaceus FBB61-2 were added to fermentation vessels. Pediocin A did not alter the normal activity of caecal microflora. Nevertheless, the presence of pediocin A producer strain reduced proteolysis compared to the mutant strain as indicated by ammonia concentrations ( P < 0·05), and isobutyric and isovaleric molar proportions ( P < 0·05).  相似文献   

9.
The production and stability of pediocin N5p from Pediococcus pentosaceus , isolated from wine, were examined in grape juice medium. Maximum growth and higher titre (4000 U ml-1) were observed at a initial pH of 7·5 and 30°C. The activity of the inhibitory substance was stable between pH values from 2·0 to 5·0 at 4° and 30°C. At pH 10·0 it was completely inactivated. When submitted to 30 min at 80°, 100° and 115°C, maximal stability was observed at pH 2·0. Ethanol up to 10% did not affect pediocin activity at acid pH, nor did 40–80 mg 1-1 SO2, independently or combined with different ethanol concentrations, affect inhibitory activity.  相似文献   

10.
Pediocin PA-1 is a bacteriocin which is produced by Pediococcus acidilactici PAC1.0. We demonstrate that pediocin PA-1 kills sensitive Pediococcus cells and acts on the cytoplasmic membrane. In contrast to its lack of impact on immune cells, pediocin PA-1 dissipates the transmembrane electrical potential and inhibits amino acid transport in sensitive cells. Pediocin interferes with the uptake of amino acids by cytoplasmic membrane vesicles derived from sensitive cells, while it is less effective with membranes derived from immune cells. In liposomes fused with membrane vesicles derived from both sensitive and immune cells, pediocin PA-1 elicits an efflux of small ions and, at higher concentrations, an efflux of molecules having molecular weights of up to 9,400. Our data suggest that pediocin PA-1 functions in a voltage-independent manner but requires a specific protein in the target membrane.  相似文献   

11.
Antigenic property of pediocin AcH produced by Pediococcus acidilactici H   总被引:8,自引:0,他引:8  
Pediocin AcH, a bacteriocin of Pediococcus acidilactici H, inhibits the growth of several food spoilage and pathogenic bacteria. The antigenic property of partially purified pediocin AcH was tested by immunizing mice and a rabbit. Pediocin AcH was not immunogenic in these animals as determined by immunoblotting even after conjugation to bovine serum albumin. The non-immunogenic nature of pediocin AcH, its non-toxicity to laboratory animals and its hydrolysis by gastric proteolytic enzymes may be considered favourably in its possible use as a food preservative.  相似文献   

12.
Antigenic property of pediocin AcH produced by Pediococcus acidilactici H   总被引:1,自引:0,他引:1  
Pediocin AcH, a bacteriocin of Pediococcus acidilactici H, inhibits the growth of several food spoilage and pathogenic bacteria. The antigenic property of partially purified pediocin AcH was tested by immunizing mice and a rabbit. Pediocin AcH was not immunogenic in these animals as determined by immunoblotting even after conjugation to bovine serum albumin. The non-immunogenic nature of pediocin AcH, its non-toxicity to laboratory animals and its hydrolysis by gastric proteolytic enzymes may be considered favourably in its possible use as a food preservative.  相似文献   

13.
The plasmid-encoded bacteriocin pediocin PA-1, produced by the gram-positive bacterium Pediococcus acidilactici strain PAC-1.0, was purified to homogeneity. The purified product exhibited antibacterial activity against several gram-positive bacterial strains, including the food pathogen Listeria monocytogenes. Pediocin PA-1 is a 4629-Da peptide with 44 amino acids and two disulfide bonds. The amino acid sequence and arrangement of the disulfide bonds were determined. Sequence data were used to calculate an isoelectric point of 10.0. The small and basic nature of PA-1 is comparable to several other bacteriocins produced by gram-positive bacteria. Reported sequences of other bacteriocins and of other antimicrobial peptides from diverse origins bear no resemblance to the sequence reported here.  相似文献   

14.
AIMS: Optimization of the growth of Pediococcus damnosus NCFB 1832 and the production of pediocin PD-1 by traditional fermentation methods. METHODS AND RESULTS: Fermentation studies were conducted in De Man Rogosa and Sharpe (MRS) broth (Oxoid), preadjusted to specific pH values, and in MRS broth supplemented with various nitrogen sources, MnSO4, MgSO4 and Tween 80. The production of pediocin PD-1 closely followed the growth curve of Ped. damnosus NCFB 1832. Maximum levels of bacteriocin activity (3249 AU ml(-1)/O.D.max) were recorded in MRS broth with an initial pH of 6.7. In media with an initial pH of 4.5 bacteriocin activity as low as 222 AU ml(-1)/O.D.max was recorded. The highest bacteriocin activity was recorded in growth conditions allowing the greatest pH variation (highest DeltapH). The addition of bacteriological peptone (1.7%, w/v), MnSO4 (0.014%, w/v) and Tween 80 (3%, v/v) to MRS and adjustment of the medium pH to 6.7 resulted in a further increase in activity (from 3249 to 5078 AU ml(-1)/O.D.max). The same medium, but with an initial pH of 6.2, resulted in an 82.5% decrease in bacteriocin activity. CONCLUSIONS: Pediocin PD-1 production is not only stimulated by the presence of specific growth factors (e.g., bacteriological peptone, MnSO4 or Tween 80), but may also be stimulated by the lowering in pH during growth (highest DeltapH), and thus also the amount of organic acids produced. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of pediocin PD-1 by the wild-type producer strain was significantly improved by using a defined medium and traditional fermentation methods.  相似文献   

15.
The influence of growth parameters on the production of pediocin AcH by Pediococcus acidilactici H was studied. This strain produced large quantities of pediocin AcH in TGE broth (Trypticase [1%], glucose [1%], yeast extract [1%], Tween 80 [0.2%], Mn2+ [0.033 mM], Mg2+ [0.02 mM] [pH 6.5]) within 16 to 18 h at 30 to 37°C (final pH, 3.6 to 3.7). Pediocin AcH production was negligible when the pH of the medium was maintained at 5.0 or above, even in the presence of high cell mass.  相似文献   

16.
Pediococcus acidilactici SJ-1, isolated from a naturally-fermented meat product, produced an antibacterial agent active against selected strains of Lactobacillus spp., Clostridium perfringens and Listeria monocytogenes. The agent was bactericidal against sensitive indicators, and sensitive to proteolytic enzymes; it was identified as a bacteriocin, and was designated as pediocin SJ-1. It was stable over a wide pH range (3–9), and apparently most stable in the lower part of that range. At pH 3.6, pediocin SJ-1 was stable at heat-processing temperatures within the range 65–121°C; its activity decreased significantly, however, when it was heated at pH 7.0. The activity of pediocin SJ-1 on sensitive indicator cells was lost in the presence of α-amylase, suggesting that it contains a glyco moiety, necessary for its antibacterial action.
Native pediocin SJ-1 exists in the form of monomers and aggregates (with molecular weights in the range 80–150 kDa). Pediocin SJ-1 was purified 262-fold by direct application of cell-free supernatant fluids to a cation-exchange chromatography column, and was resolved by SDS-PAGE as a single peptide band with a MW of ca 4 kDa. The original pediocin SJ-1-producing strain (bac+) harbours three plasmids of 4.6, 23.5, and 45.7 MDa. Production of pediocin SJ-1, but not immunity to SJ-1, is associated with the 4.6 MDa plasmid.  相似文献   

17.
Bacteriocin inactivation of Listeria monocytogenes 412 was studied as a function of growth phase. Cells were treated with nisin (300 IU ml-1) or pediocin (320 or 2560 AU ml-1) for 20 min at 30 degrees C. Inactivation with nisin or the low concentration of pediocin was growth phase dependent, with exponentially growing cells being more susceptible than stationary cells. No effect of growth phase was observed for the high pediocin concentration. Pediocin inactivation (320 AU ml-1) of L. monocytogenes 412 exposed to osmotic (6.5% NaCl) or low-temperature (5 degrees C) stress was investigated. Pediocin failed to inactivate osmotically stressed cultures and was unable to inhibit cold-stressed cells to the same degree as unstressed cells.  相似文献   

18.
Four spontaneous nisin-resistant variants R1, R1M, T5 and T7 of Pediococcus acidilactici UL5, a pediocin producer, were isolated on a nisin gradient. The minimum inhibitory concentration of Ped. acidilactici UL5 using an agar diffusion test was 0·25 ng, while that of R1, R1M, T5 and T7 were 10, 25 and more than 32·5 μg for the two latter, respectively. Nisin resistance phenotype was stable after 60 generations in MRS nisin-free liquid media and 10 consecutive transfers in solid medium. Pediococcus acidilactici UL5 and its nisin-resistant variants exhibited the same total DNA profile, level of production of pediocin and adsorption of nisin on the cell surface. The specific growth rate (μ) decreased with the level of resistance of the culture. Nisin-resistant variants and parental strain UL5 showed differences in sensitivity to antibiotics in which some act on the cell surfaces. Moreover, the fatty acid composition of the cell wall in nisin-resistant variants, compared with UL5, was different, particularly in C16:1 and C18:1. Results suggest that a change in structure/composition of nisin-resistant variants might be associated with nisin resistance.  相似文献   

19.
Bacteria isolated from radish were identified as Lactococcus lactis subsp. cremoris R and their bacteriocin was designated lactococcin R. Lactococcin R was sensitive to some proteolytic enzymes (proteinase-K, pronase-E, proteases, pepsin, α-chymotrypsin) but was resistant to trypsin, papain, catalase, lysozyme and lipase, organic solvents, or heating at 90 °C for 15, 30 and 60 min, or 121 °C for 15 min. Lactococcin R remained active after storage at −20 and −70 °C for 3 months and after exposure to a pH of 2–9. The molecular weight of lactococcin R was about 2·5 kDa. Lactococcin R was active against many food-borne pathogenic and food spoilage bacteria such as Clostridium, Staphylococcus, Listeria, Bacillus, Micrococcus, Enterococcus, Lactobacillus, Leuconostoc, Streptococcus and Pediococcus spp., but was not active against any Gram-negative bacteria. Lactococcin R was produced during log phase and reached a maximum activity (1600 AU ml−1) at early stationary phase. The highest lactococcin R production was obtained in MRS broth with 0·5% glucose, at 6·5–7·0 initial pH values, 30 °C temperature and 18–24-h incubation times. Lactococcin R adsorbed maximally to its heat-killed producing cells at pH 6–7 (95%). Crude lactococcin R at 1280 AU ml−1 was bactericidal, reducing colony counts of Listeria monocytogenes by 99·98% in 3 h. Lactococcin R should be useful as a biopreservative to prevent growth of food-borne pathogenic and food spoilage bacteria in ready-to-eat, dairy, meat, poultry and other food products. Lactococcin R differs from nisin in having a lower molecular weight, 2·5 kDa vs 3·4 kDa, and in being sensitive to pepsin and α-chymotrypsin to which nisin is resistant.  相似文献   

20.
Production of the bacteriocin pediocin SM‐1 by Pediococcus pentosaceus Mees 1934 was investigated in pH‐controlled batch and chemostat cultures using a complex medium containing glucose, sucrose or fructose. In chemostat cultures operated at 150 rpm, 30°C, 60% dissolved oxygen tension, pH 6.5, and D = 0.148 h?1, the pediocin titer reached 185 AU/mL representing an increase of 32% compared with batch cultures in which glucose was used as the carbon source. Pediocin biosynthesis was markedly affected by the growth rate of the producer microorganism. For all carbon sources tested, pediocin production appeared to take place only at dilution rates lower than μmax. However, only glucose supported production at the very low dilution rate of 0.05 h?1 indicating a direct regulation of pediocin biosynthesis by the carbon source. Glucose supported higher biomass productivity and higher pediocin titers and yields compared with the other sugars used. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1481–1486, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号