首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factor-1 (IGF-1) both promotes survival and activates protein synthesis in neurons. In the present paper, we investigate the effect of IGF-1 treatment on cap-dependent translation in primary cultured neuronal cells. IGF-1 treatment increased the phosphorylation of eukaryotic initiation factor (eIF)-4E-binding protein 1 (4E-BP1), exclusively at Thr-36 and Thr-45 residues, and eIF-4G phosphorylation at Ser-1108. In contrast, a significant eIF-4E dephosphorylation was found. In parallel, increased eIF-4E/4G assembly and protein synthesis activation in response to IGF-1 treatment were observed. The phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin and the mammalian target of rapamycin (mTOR) inhibitor rapamycin, but not the mitogen-activated protein kinase (MAPK)-activating kinase (MEK) inhibitor PD98059, reversed the IGF-1-induced effects observed on eIF-4E/4G assembly and phosphorylation status of 4E-BP1, eIF-4E, and eIF-4G. Therefore, our findings show that the IGF-1-induced regulation of cap-dependent translation is largely dependent on the PI-3K and mTOR pathway in neuronal cells.  相似文献   

2.
Burkitt’s lymphoma is an aggressive B cell lymphoma whose pathogenesis involves mainly c-Myc translocation and hyperexpression, in addition to antigen-independent BCR signaling and, in some cases, EBV infection. As result of BCR signaling activation, the PI3K/AKT/mTOR pathway results constitutively activated also in the absence of EBV, promoting cell survival and counterbalancing the pro-apoptotic function that c-Myc may also exert. In this study we found that quercetin, a bioflavonoid widely distributed in plant kingdom, reduced c-Myc expression and inhibited the PI3K/AKT/mTOR activity in BL, leading to an apoptotic cell death. We observed a higher cytotoxic effect against the EBV-negative BL cells in comparison with the positive ones, suggesting that this oncogenic gammaherpesvirus confers an additional resistance to the quercetin treatment. Besides cell survival, PI3K/AKT/mTOR pathway also regulates autophagy: we found that quercetin induced a complete autophagic flux in BL cells, that contributes to c-Myc reduction in some of these cells. Indeed, autophagy inhibition by chloroquine partially restored c-Myc expression in EBV-positive (Akata) and EBV-negative (2A8) cells that harbor c-Myc mutation. Interestingly, chloroquine did not affect the quercetin-mediated reduction of c-Myc expression in Ramos cells, that have no c-Myc mutation in the coding region, although autophagy was induced.These results suggest that mutant c-Myc could be partially degraded through autophagy in BL cells, as previously reported for other mutant oncogenic proteins.  相似文献   

3.
Protein synthesis, cell growth and oncogenesis   总被引:8,自引:0,他引:8  
Two lines of investigation support a new hypothesis concerning the role of protein synthesis in the mitogenic pathway. The first is that a variety of mitogens and oncogene products increase phosphorylation and thereby activate eIF-4E, which is involved in the rate-limiting transfer of mRNA to ribosomes. The second is that overexpression or microinjection of eIF-4E induce rapid cell proliferation and oncogenic transformation.  相似文献   

4.
Incubation of hepatocytes under hypoxia increases binding of translation initiation factor eIF-4E to its inhibitory regulator 4E-BP1, and this correlates with dephosphorylation of 4E-BP1. Rapamycin induced the same effect in aerobic cells but no additive effect was observed when hypoxic cells were treated with rapamycin. This enhanced association of 4E-BP1 with eIF-4E might be mediated by mTOR. Nevertheless, only hypoxia produces a rapid inhibition of protein synthesis. Although hypoxia might be signalling via the rapamycin-sensitive pathway by changing eIF-4E availability, such a pathway is unlikely to be responsible for the depression in overall protein synthesis under hypoxia.  相似文献   

5.
6.
Eukaryotic initiation factor-4E (eIF-4E) binds to the cap structure of eukaryotic mRNAs and is a component of the cap-binding protein complex eIF-4F. eIF-4E is present in cells in limiting concentrations and is phosphorylated both in vivo and in vitro by protein kinase C (PKC). Recently, eIF-4E has been implicated as an intracellular transducer of extracellular growth signals; microinjection of recombinant eIF-4E into quiescent NIH 3T3 cells induced DNA synthesis. In the present report, the mitogenic activity of eIF-4E was examined after coinjection with PKC. Recombinant eIF-4E was phosphorylated by PKC at the same amino acid that is phosphorylated in cultured cells and reticulocytes in response to phorbol ester. At limiting concentrations of eIF-4E, coinjection with PKC induced a fivefold increase in the mitogenic activity of eIF-4E. Injection of PKC alone or coinjection of eIF-4E with cAMP-dependent protein kinase (PKA) or the Raf protein had no effect. These results suggest that the mitogenic activity of eIF-4E is enhanced by PKC-specific phosphorylation and that phosphate addition is a rate-limiting step in eIF-4E activity.  相似文献   

7.
Several polypeptide factors that are essential for the initiation of protein synthesis bind to eukaryotic mRNAs and facilitate the formation of ribosome initiation complexes. Purified mRNA-binding translation initiation factors were microinjected into quiescent NIH 3T3 cells to study the possible growth-promoting role of these factors in living cells. We report that recombinant eIF-4E and rabbit reticulocyte eIF-4F induce a dose-dependent increase of DNA synthesis and morphologically transform NIH 3T3 cells. These results suggest that polypeptides involved in activating the rate-limiting step of protein synthesis (initiation complex formation) can be mitogenic and oncogenic when overexpressed in a cell by direct injection. Thus, eIF-4E and eIF-4F represent a class of proto-oncogenic proteins that is cytoplasmic, is involved in protein synthesis initiation, and is distinct from the proto-oncogenes that have been identified previously.  相似文献   

8.
Activation of PI3-K-AKT and ERK pathways is a complication of mTOR inhibitor therapy. Newer mTOR inhibitors (like pp242) can overcome feedback activation of AKT in multiple myeloma (MM) cells. We, thus, studied if feedback activation of ERK is still a complication of therapy with such drugs in this tumor model. PP242 induced ERK activation in MM cell lines as well as primary cells. Surprisingly, equimolar concentrations of rapamycin were relatively ineffective at ERK activation. Activation was not correlated with P70S6kinase inhibition nor was it prevented by PI3-kinase inhibition. ERK activation was prevented by MEK inhibitors and was associated with concurrent stimulation of RAF kinase activity but not RAS activation. RAF activation correlated with decreased phosphorylation of RAF at Ser-289, Ser-296, and Ser-301 inhibitory residues. Knockdown studies confirmed TORC1 inhibition was the key proximal event that resulted in ERK activation. Furthermore, ectopic expression of eIF-4E blunted pp242-induced ERK phosphorylation. Since pp242 was more potent than rapamycin in causing sequestering of eIF-4E, a TORC1/4E-BP1/eIF-4E-mediated mechanism of ERK activation could explain the greater effectiveness of pp242. Use of MEK inhibitors confirmed ERK activation served as a mechanism of resistance to the lethal effects of pp242. Thus, although active site mTOR inhibitors overcome AKT activation often seen with rapalog therapy, feedback ERK activation is still a problem of resistance, is more severe than that seen with use of first generation rapalogs and is mediated by a TORC1- and eIF-4E-dependent mechanism ultimately signaling to RAF.  相似文献   

9.
Deregulation of protein translation is a common event in cancer and occurs frequently as a result of mutational activation of the AKT signaling pathway. We had previously reported the in vivo oncogenic activity of the translation initiation factor eIF4E, which acts downstream AKT and mTOR. We now identified an absolute requirement for Ser209 phosphorylation by the MNK1/2 kinases for eIF4E’s oncogenic action. MNK1/2 kinases are dispensable for normal development in mammals. This potential difference between normal and cancer cells may provide a therapeutic avenue for targeting translational requirements in cancer.  相似文献   

10.
Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.  相似文献   

11.
HeLa cells were transformed to express antisense RNA against initiation factor eIF-4E mRNA from an inducible promoter. In the absence of inducer, these cells (AS cells) were morphologically similar to control cells but grew four- to sevenfold more slowly. Induction of antisense RNA production was lethal. Both eIF-4E mRNA and protein levels were reduced in proportion to the degree of antisense RNA expression, as were the rates of protein synthesis in vivo and in vitro. Polysomes were disaggregated with a concomitant increase in ribosomal subunits. Translation in vitro was restored by addition of the initiation factor complex eIF-4F but not by eIF-4E alone. Immunological analysis revealed that the p220 component of eIF-4F was decreased in extracts of AS cells and undetectable in AS cells treated with inducer, suggesting that p220 and eIF-4E levels are coordinately regulated. eIF-4A, another component of eIF-4F, was unaltered.  相似文献   

12.
K J Heesom  R M Denton 《FEBS letters》1999,457(3):489-493
mTOR immunoprecipitates contain two 4E-BP1 protein kinase activities. One appears to be due to mTOR itself and results in the phosphorylation of 4E-BP1 on residues T(36) and T(45), as shown previously by others. The other is a kinase which can be separated from mTOR and which phosphorylates 4E-BP1 within a peptide(s) containing residues S(64) and T(69). This phosphorylation, which occurs predominantly on S(64), results in the dissociation of 4E-BP1 from eIF-4E.  相似文献   

13.
Cap-dependent protein synthesis in animal cells is inhibited by heat shock, serum deprivation, metaphase arrest, and infection with certain viruses such as adenovirus (Ad). At a mechanistic level, translation of capped mRNAs is inhibited by dephosphorylation of eukaryotic initiation factor 4E (eIF-4E) (cap-binding protein) and its physical sequestration with the translation repressor protein BP-1 (PHAS-I). Dephosphorylation of BP-I blocks cap-dependent translation by promoting sequestration of eIF-4E. Here we show that heat shock inhibits translation of capped mRNAs by simultaneously inducing dephosphorylation of eIF-4E and BP-1, suggesting that cells might coordinately regulate translation of capped mRNAs by impairing both the activity and the availability of eIF-4E. Like heat shock, late Ad infection is shown to induce dephosphorylation of eIF-4E. However, in contrast to heat shock, Ad also induces phosphorylation of BP-1 and release of eIF-4E. BP-1 and eIF-4E can therefore act on cap-dependent translation in either a mutually antagonistic or cooperative manner. Three sets of experiments further underscore this point: (i) rapamycin is shown to block phosphorylation of BP-1 without inhibiting dephosphorylation of eIF-4E induced by heat shock or Ad infection, (ii) eIF-4E is efficiently dephosphorylated during heat shock or Ad infection regardless of whether it is in a complex with BP-1, and (iii) BP-1 is associated with eIF-4E in vivo regardless of the state of eIF-4E phosphorylation. These and other studies establish that inhibition of cap-dependent translation does not obligatorily involve sequestration of eIF-4E by BP-1. Rather, translation is independently regulated by the phosphorylation states of eIF-4E and the 4E-binding protein, BP-1. In addition, these results demonstrate that BP-1 and eIF-4E can act either in concert or in opposition to independently regulate cap-dependent translation. We suggest that independent regulation of eIF-4E and BP-1 might finely regulate the efficiency of translation initiation or possibly control cap-dependent translation for fundamentally different purposes.  相似文献   

14.
The immunosuppressant, rapamycin, inhibits cell growth by interfering with the function of a novel kinase, termed mammalian target of rapamycin (mTOR). The putative catalytic domain of mTOR is similar to those of mammalian and yeast phosphatidylinositol (PI) 3-kinases. This study demonstrates that mTOR is a component of a cytokine-triggered protein kinase cascade leading to the phosphorylation of the eukaryotic initiation factor-4E (eIF-4E) binding protein, PHAS-1, in activated T lymphocytes. This event promotes G1 phase progression by stimulating eIF-4E-dependent translation initiation. A mutant YAC-1 T lymphoma cell line, which was selected for resistance to the growth-inhibitory action of rapamycin, was correspondingly resistant to the suppressive effect of this drug on PHAS-1 phosphorylation. In contrast, the PI 3-kinase inhibitor, wortmannin, reduced the phosphorylation of PHAS-1 in both rapamycin-sensitive and -resistant T cells. At similar drug concentrations (0.1-1 microM), wortmannin irreversibly inhibited the serine-specific autokinase activity of mTOR. The autokinase activity of mTOR was also sensitive to the structurally distinct PI 3-kinase inhibitor, LY294002, at concentrations (1-30 microM) nearly identical to those required for inhibition of the lipid kinase activity of the mammalian p85-p110 heterodimer. These studies indicate that the signaling functions of mTOR, and potentially those of other high molecular weight PI 3-kinase homologs, are directly affected by cellular treatment with wortmannin or LY294002.  相似文献   

15.
A 10-50-fold, biphasic increase in the rate of 32Pi labeling of eIF-4E was closely correlated with the induction of protein and glycoprotein biosynthesis when resting murine splenic B lymphocytes (B cells) were activated by bacterial lipopolysaccharide or the combination of phorbol 12-myristate 13-acetate and ionomycin. The fraction of eIF-4E which was phosphorylated only increased from 46% in resting cells to 83% in lipopolysaccharide-activated cells. This discrepancy between the increase in the fraction of phosphorylated eIF-4E and the increase in 32Pi labeling suggested that the phosphoryl group of eIF-4E turns over slowly in resting B cells compared with activated cells. The turnover rate for the eIF-4E phosphate moiety in lipopolysaccharide-activated cells was rapid (t1/2 = 2 h) in comparison to the eIF-4E polypeptide chain, which did not turn over detectably in 6 h. Neither protein kinase C nor a cyclic nucleotide-dependent protein kinase appeared to be involved in eIF-4E phosphorylation in B cells, based on the observations that the metabolic labeling of eIF-4E by 32Pi was insensitive to the protein kinase inhibitors H-7 and HA1004, and that maximal labeling occurred after protein kinase C activity was "down-regulated" to very low levels in phorbol 12-myristate 13-acetate/ionomycin-activated cells. Dephosphorylation in vivo was blocked by okadaic acid (IC50 = 200 nM). These results indicate that a rapid phosphorylation-dephosphorylation of eIF-4E is associated with high translation rates during the activation of B cells, and implicate protein phosphatase-1 (or possibly-2A) in the dephosphorylation of the initiation factor.  相似文献   

16.
Our recent findings on Rheb and eIF4E address key questions of translational control in cancer and have implications for tumor therapy 1. Briefly, we find that Rheb a proximal activator of mTORC1 and protein translation can cooperate with c-Myc in tumorigenesis in vivo in a manner resembling Akt or the oncogenic eIF4E translation initiation factor. Rheb is highly expressed in some human lymphomas as well as other cancers and likely contributes to malignancies in different tissues 2. The cancer-relevant activities emanating from increased Rheb depend on activation of mTORC1 and are sensitive to rapamycin. Moreover,farnesyltransferase inhibitors (FTIs) can directly block Rheb activity and this is responsible for the therapeutic effect of these drugs in certain tumors. We will discuss here how translational control mechanisms contribute to oncogenesis and speculate on the potential and limitations of targeting these co-operating oncogenic events for therapy.  相似文献   

17.
18.
19.
The initiation factor eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in initiating translation of mRNAs, including those encoding oncogenic proteins. Therefore, eIF4E is considered a survival protein involved in cell cycle progression, cell transformation, and apoptotic resistance. Phosphorylation of eIF4E (usually at Ser209) increases its binding affinity for the cap of mRNA and may also favor its entry into initiation complexes. Mammalian target of rapamycin (mTOR) inhibitors suppress cap-dependent translation through inhibition of the phosphorylation of eIF4E-binding protein 1. Paradoxically, we have shown that inhibition of mTOR signaling increases eIF4E phosphorylation in human cancer cells. In this study, we focused on revealing the mechanism by which mTOR inhibition increases eIF4E phosphorylation. Silencing of either mTOR or raptor could mimic mTOR inhibitors' effects to increase eIF4E phosphorylation. Moreover, knockdown of mTOR, but not rictor or p70S6K, abrogated rapamycin's ability to increase eIF4E phosphorylation. These results indicate that mTOR inhibitor-induced eIF4E phosphorylation is secondary to mTOR/raptor inhibition and independent of p70S6K. Importantly, mTOR inhibitors lost their ability to increase eIF4E phosphorylation only in cells where both Mnk1 and Mnk2 were knocked out, indicating that mTOR inhibitors increase eIF4E phosphorylation through a Mnk-dependent mechanism. Given that mTOR inhibitors failed to increase Mnk and eIF4E phosphorylation in phosphatidylinositol 3-kinase (PI3K)-deficient cells, we conclude that mTOR inhibition increases eIF4E phosphorylation through a PI3K-dependent and Mnk-mediated mechanism. In addition, we also suggest an effective therapeutic strategy for enhancing mTOR-targeted cancer therapy by cotargeting mTOR signaling and Mnk/eIF4E phosphorylation.  相似文献   

20.
Control of translation initiation is one means by which cells regulate growth and proliferation, with components of the protein-synthesizing machinery having oncogenic potential. Expression of latency protein LMP2A by the human tumor virus Epstein-Barr virus (EBV) activates phosphatidylinositol 3-kinase/Akt located upstream of an essential mediator of growth signals, mTOR (mammalian target of rapamycin). We show that mTOR is activated by expression of LMP2A in carcinoma cells, leading to wortmannin- and rapamycin-sensitive inhibition of the negative regulator of translation, eukaryotic initiation factor 4E-binding protein 1, and increased c-Myc protein translation. Intervention by this DNA tumor virus in cellular translational controls is likely to be an integral component of EBV tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号