首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Mucus transport by two-phase gas-liquid flow mechanism was investigated with in vitro flow models under asymmetric periodic airflow conditions with nine different liquid solutions with rheological properties similar to human sputum. The flow model was made with 1.0-cm-ID glass tube and positioned either vertically or horizontally. With a constant supply of the test liquids into the model tube (0.5 ml/min), the liquid layer transport speed (LLTS) as well as the mean liquid layer thickness at steady-state condition (hs) was measured in conjunction with various airflow patterns of different expiratory and inspiratory flow rate, breathing frequency (f), and tidal volume (VT). The flow patterns were maintained within the range of normal breathing. In the horizontal tube model, LLTS ranged from 1.14 +/- 0.02 to 3.39 +/- 0.04 cm/min at the peak expiratory flow rate (VEp) of 30-60 l/min. The inspiratory flow rate, as well as f and VT did not affect LLTS. However, LLTS increased with increasing VEp, and at the same VEp LLTS was higher with viscoelastic than with viscous liquid. In the vertical tube model, the upward transport of mucus could not be achieved at VEp lower than 30 l/min particularly with low viscosity and low elasticity fluid. However, at high values of VEp, LLTS was comparable to that in the horizontal tube model with viscoelastic fluid, whereas LLTS of viscous liquid showed 26-40% lower than that in the horizontal tube model. The value of hs was 5-20% of the tube diameter at VEp of 30-60 l/min in both models. These results indicate that effective mucus clearance can be achieved by two-phase gas-liquid flow mechanism in patients with excessive bronchial secretions with biased tidal breathing favoring the expiratory flow and that the clearance can be further promoted by changing rheological properties of mucus.  相似文献   

2.
Mucus transport speed induced by two-phase gas-liquid interaction was measured in the continuous two-phase annular flow tube models, and factors influencing the transport speed were assessed in conjunction with rheological properties of mucus. The flow model was made with 1.0-cm-ID glass tubes and positioned either vertically or horizontally. During a continuous passage of airflow through the model tube, mucus stimulants were supplied into the tube at a rate of 0.5-2.0 ml/min. The advancing speed of the leading edge of the mucous layer and mean mucous layer thickness were then measured. The transport speed in the vertical tube model ranged from 1.1 to 3.1 cm/min with a mucus feed rate of 0.5 ml/min at airflow rates of 0.33-1.17 l/s and increased with increasing airflow rates but decreased rapidly with increasing viscosity of mucus. The transport speed increased almost proportionally with increasing mucus feed rate. Elasticity of mucus did not affect the transport speed itself. However, more elastic mucus caused lower flow resistance and thereby could be transported with a much reduced work load. The transport speed in the horizontal tube model was 5-60% faster than that in the vertical tube model. The mean mucous layer thickness in the vertical tube model was found to be in the range of 0.5-1.5 mm in the experimental conditions used, and decreased rapidly with increasing airflow rate and decreasing viscosity of mucus. From these data the transport speed could be functionally related to airway diameter, mucous layer thickness, and mucus production rate.  相似文献   

3.
Aerosol deposition in the airways with excessive mucus secretions was investigated utilizing an in vitro airway model lined with various mucus simulants of differing rheological properties. The airway model was made with a straight glass tube (1.0 cm ID and 20 cm in length) and positioned vertically. The mucus simulants were supplied into the tube at a constant rate and made to move upward through the tube as a thin layer (0.6-1.7 mm) undergoing a random wave motion by means of upward airflow. Aerosols (3.0 and 5.0-micron diam) were passed through the mucus-lined tube at flow rates of 0.33-1.17 l/s, and the deposition of the aerosols in the tube was determined by sampling the aerosols at the inlet and the outlet of the tube on filters. During the sampling, pressure drop across the tube model was also measured. Deposition efficiency in the 20-cm-long mucus-lined tube ranged from 13 to 92% with 3.0-micron-diam particles and from 66 to 98% with 5.0-micron-diam particles. This deposition was 25-300 times higher than that in the dry tube. The deposition was higher with increasing viscosity of mucus but was lower with increasing elasticity of mucus. Pressure drop across the mucus-lined tube was much higher than that in the dry tube, and the increase was more prominent with mucous layers with higher viscosity but lower elasticity values. Therefore, aerosol deposition showed a good positive relationship with pressure drop. However, percent increase of aerosol deposition in the mucus-lined tube was 2-5 times higher than that of pressure drop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Influences of shear rate (surface extension), airflow, in-mouth headspace volume, synthetic saliva and human epithelial cells (modelling mucosa) on the initial dynamic flavour release from liquids were analysed. Simulating physiological mouth parameters, initial dynamic flavour release experiments over a time period of 30 s were carried out using a proven mouth model apparatus. Flavour compounds of different chemical classes were dissolved in water or in aqueous starch hydrolysate in concentrations typically present in food ( micro g/l to mg/l). Forced by increasing shear rates the enlargement of the gas-liquid interface (vortex formation) caused an increased release of flavour molecules. The release of less soluble compounds was reduced by increasing shear forces due to an improved dissolution. Increasing volumetric airflow rates resulted generally in higher release rates and in a change of pattern of release kinetics. Maximum flavour release was found at a ratio of 1:1 for in-mouth headspace and liquid volume. Neither addition of saliva alone nor the combination of saliva and mucosa showed significant influence on in-mouth flavour release from liquids in the model mouth.  相似文献   

5.
Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.  相似文献   

6.
The remodeling process of the arterial wall in atherosclerosis involves intimal thickening, which can be related to the barrier functions of the endothelial cell layer (ECL) and internal elastic lamina (IEL) using horseradish peroxidase (HRP) as a tracer. To evaluate the ECL and IEL permeabilities (PECL and PIEL, respectively) and intimal transport parameters, e.g., apparent HRP velocity (VI) and diffusivity, we compared simulations with a mathematical model to experimental data. In this study, we injected HRP into the vein of apolipoprotein E-null mice and measured HRP concentration profiles in lesioned areas of aortas. Lesion size was characterized by lower, middle, and upper ranges of the intimal/medial thickness (deltaI/deltaM): 01.0. The PECL (in micrometers per minute) of 5-mo-old mice in the middle range (0.98+/-0.14) was significantly greater than that in the lower range (0.21+/-0.03) but not significantly different from mice in the upper range (0.99+/-0.55). The PECL of 12-mo-old mice increased significantly with the relative intimal thickness: 0.27+/-0.04 in the lower range, 1.12+/-0.15 in the middle range, and 1.74+/-0.24 in the upper range. In both age groups, VI (in micrometers per minute) increased significantly from lower to upper ranges of intimal thickness. However, PIEL did not change significantly with relative intimal thickness and age. In the upper range of intimal thickness, PECL and VI were significantly greater in 12-mo-old mice than in 5-mo-old mice. These data indicate an interaction between lesion growth and aging that leads to progressive loss in the integrity of the endothelial barrier function. Furthermore, the IEL is not a significant barrier between the intima and tunica media in the atherosclerotic process.  相似文献   

7.
The inspiratory flow characteristics in a three-generation lung airway have been numerically investigated using a control volume method to solve the fully three-dimensional laminar Navier-Stokes equations. The three-generation airway is extracted from the fifth to seventh branches of the model of Weibel (Morphometry of the Human Lung, Academic Press, New York, Springer, Berlin, 1963) with in-plane and 90 degrees off-plane configurations. Computations are carried out in the Reynolds number range of 200-1600, corresponding to mouth-air breathing rates ranging from 0.27 to 2.16l/s, or an averaged height of a man breathing from quiet to vigorous state. Particular attention is paid to establishing relations between the Reynolds number and the overall flow characteristics, including flow patterns and pressure drop. The ratio of airflow rate through the medial branch to that of the lateral branch for an in-plane airway increases as Re(0.227). However, the total pressure drop coefficient varies as Re(-0.497) for an in-plane airway and as Re(-0.464) for an off-plane airway. These pressure drop results are in good agreement with the experimentally measured behavior of Re(-0.5) and are more accurate than the numerically determined behavior of Re(-0.61) assuming the airways to be approximated by two-dimensional channels.  相似文献   

8.
Biofilm detachment mechanisms in a liquid-fluidized bed   总被引:10,自引:0,他引:10  
Bed fluidization offers the possibility of gaining the advantages of fixed-film biological processes without the disadvantage of pore clogging. However, the biofilm detachment rate, due to hydrodynamics and particle-to-particle attrition, is very poorly understood for fluidized-bed biofilm processes. In this work, a two-phase fluidized-bed biofilm was operated under a constant surface loading (0.09 mg total organic carbon/cm(2) day) and with a range of bed height (H), fluid velocities (U), and support-particle concentrations (C(p)). Direct measurements were made for the specific biofilm loss rate coefficient (b(s))and the total biofilm accumulation (X(f)L(f)). A hydrodynamic model allowed independent determination of the biofilm density (X(f)), biofilm thickness (L(f)), liquid shear stress (tau), and Reynolds number (Re). Multiple regression analysis of the results showed that increased particle-to-particle attrition, proportional to C(p) and increased turbulence, described by Re, caused the biofilms to be denser and thinner. The specific detachment rate coefficient (b(s)) increased as C(p) and Re increased. Almost all of the 6, values were larger than predicted by a previous model derived for smooth biofilms on a nonfluidized surface. Therefore, the turbulence and attrition of bed fluidization appear to be dominant detachment mechanisms.  相似文献   

9.
The capillary instability that occurs on an annular film lining a tube is studied as a model of airway closure. Small waves in the film can amplify and form a plug across the tube. This dynamical behavior is studied using theoretical models and bench-top experiments. Our model predicts the initial growth rate of the instability and its dependence on surfactant effects. In experiments, an annular film is formed by infusion of water into an initially oil-filled glass capillary tube. The thickness of the oil film varies with the infusion flow rate. The instability growth rate and closure time are measured for a range of film thicknesses. Our theory predicts that a thinner film and higher surfactant activity enhance stability; surfactant can decrease the growth rate to 25% of its surfactant-free value. In experiments, we find that surfactant can decrease the growth rate to 20% and increase the closure time by a factor of 3.8. Functional values of a critical film thickness for closure support the theory that it increases in the presence of surfactant.  相似文献   

10.
Physical damage of animal cells in suspension culture, due to stirring and sparging, is coupled with complex metabolic responses. Nylon microcapsules, therefore, were used as a physical model to study the mechanisms of damage in a stirred bioreactor and in a bubble column. Microcapsule breaskage folowed first-order kinetices in all experiments Entrainment of bubbles into the liquid phase in the stirred bioreactor gave more microcapsule breakage. In the bubble column, the bubble bursting zone at gas-liquid interface was primarilu responsible for microcapsule breakage. The forces on the microcapsules were equivalent to an external pressure of approximately 4 x 10(4) N . m(-2), based on the critical microcapsule diameter for survival of 190 mum. A stable foam layer, however, was found to be effective in protecting microcapsules from damage. The microcapsule transport to the gas-liquid interface and entrainment into the foam phase was consistent with flotation by air bubbles. This result implies that additives and operation of bioreactors should be selected to minimize flotation of cells. (c) 1992 John Wiley & Sons, Inc.  相似文献   

11.
The clearance of mucus through coughing is a complex, multiphase process, which is affected principally by mucus viscosity and airflow velocity; however, it is also critically affected by the thickness of the two layers of mucus—the serous and gel layers—and oscillation level. The present study examines the effects of the latter parameters more closely. To do so, the mucus clearance process is simulated with a transient 3D volume of fluid (VOF) multiphase model in ANSYS Fluent. The model includes mucus’ bilayer properties and a wide range of boundary conditions were tested. The model was analysed in both a straight tube and a realistic trachea. Ultimately, the model was able to both capture air-mucus interface wave evolution and predict the overall behaviour of the clearance process. The results were consistent with experimental clearance data and numerical airflow simulations, which indicates our methodology is appropriate for future studies. Ultimately, the mere presence of the serous layer was found to increase mucus clearance by more than 15 percent. An oscillating flow enhanced clearance by up to 5 percent. Interestingly, interface wave steepness was found to be inversely correlated with mucus thickness, but directly with mucus velocity, which suggests it will be an interesting parameter for further study.  相似文献   

12.
Sharan M  Popel AS 《Biorheology》2001,38(5-6):415-428
A two-phase model for the flow of blood in narrow tubes is described. The model consists of a central core of suspended erythrocytes and a cell-free layer surrounding the core. It is assumed that the viscosity in the cell-free layer differs from that of plasma as a result of additional dissipation of energy near the wall caused by the red blood cell motion near the cell-free layer. A consistent system of nonlinear equations is solved numerically to estimate: (i) the effective dimensionless viscosity in the cell-free layer (beta), (ii) thickness of the cell-free layer (1-lambda) and (iii) core hematocrit (H(c)). We have taken the variation of apparent viscosity (mu(app)) and tube hematocrit with the tube diameter (D) and the discharge hematocrit (H(D)) from in vitro experimental studies [16]. The thickness of the cell-free layer computed from the model is found to be in agreement with the observations [3,21]. Sensitivity analysis has been carried out to study the behavior of the parameters 1-lambda, beta, H(c), B (bluntness of the velocity profile) and mu(app) with the variation of D and H(D).  相似文献   

13.
The total and dynamic liquid saturation under concurrent gas-liquid downflow through packed beds were experimentally measured for non-foaming, foaming Newtonian and non-Newtonian liquids. The variables include the column diameter, packing size and shape, flow rate of the phases, and physical properties. Correlations were presented in terms of Lockhart-Martinelli parameter, χ for non-foaming Newtonian and non-Newtonian liquids and in terms of modified Lockhart-Martinelli parameter, χ′ for foaming Newtonian liquids.  相似文献   

14.
The transport of long gas bubbles, suspended in liquid, through symmetric bifurcations, is investigated experimentally and theoretically as a model of cardiovascular gas bubble transport in air embolism and gas embolotherapy. The relevant dimensionless parameters in the models match the corresponding values for arteries and arterioles. The effects of roll angle (the angle the plane of the bifurcation makes with the horizontal), capillary number (a dimensionless indicator of flow), and bubble volume (or length) on the splitting of bubbles as they pass through the bifurcation are examined. Splitting is observed to be more homogenous at higher capillary numbers and lower roll angles. It is shown that, at nonzero roll angles, there is a critical value of the capillary number below which the bubbles do not split and are transported entirely into the upper branch. The value of the critical capillary number increases with roll angle and parent tube diameter. A unique bubble motion is observed at the critical capillary number and for slightly slower flows: the bubble begins to split, the meniscus in the lower branch then moves backward, and finally the entire bubble enters the upper branch. These findings suggest that, in large vessels, emboli tend to be transported upward unless flow is unusually strong but that a more homogeneous distribution of emboli occurs in smaller vessels. This corresponds to previous observations that air emboli tend to lodge in the upper regions of the lungs and suggests that relatively uniform infarction of tumors by gas embolotherapy may be possible.  相似文献   

15.
Recent studies that have compared CT or MRI images of an individual's nasal anatomy and measures of their olfactory sensitivity have found a correlation between specific anatomical areas and performance on olfactory assessments. Using computational fluid dynamics (CFD) techniques, we have developed a method to quickly (相似文献   

16.
Two aspects of abiotic transport of nucleopolyhedrovirus from soil to cotton plants were examined in greenhouse experiments: the distance from the plants and depth in soil from which the virus could be transported under controlled conditions of soil type and moisture, wind, and precipitation. Transport distance and depth were tested separately under relatively conducive (precipitation/sandy soil and wind/clay soil) and non-conducive (precipitation/clay soil and wind/sandy soil) conditions, as determined in previous research. The amount of virus transported by precipitation generally decreased as distance from the plant increased, but in wind the amounts of virus transported were best described by polynomial models, with transport efficiency usually peaking at a distance of 60 cm. Depending on plant height and tissue, the farthest distances that virus was transported ranged from 30 to 60 cm by precipitation from clay soil, 60-75 cm in precipitation/sand, 60-80 cm in wind/clay, and 60-80 cm in wind/sand. In the depth experiments, transport by precipitation and wind generally decreased as the depth of virus in soil increased. The greatest depth from which NPV was transported ranged from 0 to 0.5 cm by precipitation from clay soil, 0.5-1.0 cm in precipitation/sand, 1.0-2.0 cm in wind/clay, and 0.5-1.0 cm in wind/sand. All of the experimental parameters (distance or depth, soil type, plant height, plant tissue) and all two-way interactions significantly (P<0.05) affected transport in all four experiments, except for the "soilxplant tissue" interaction in the depth/wind experiment. In all of the experiments, transport was significantly greater (P<0.05) to lower than to upper portions of plants and to leaves than to buds and squares. Transport was significantly greater from sandy soil than from clay in precipitation, and it was greater from clay than from sandy soil in wind. The results will contribute to NPV epizootiology, microbial control, and risk assessment.  相似文献   

17.
A computational analysis of confined nonimpinging jet flow in a blind tube is performed as an initial investigation of the underlying fluid and mass transport mechanics of tracheal gas insufflation. A two-dimensional axisymmetric model of a laminar steady jet flow into a concentric blind-end tube is put forth and the governing continuity, momentum, and convection-diffusion equations are solved with a finite element code. The effects of the jet diameter based Reynolds number (Re(j)), the ratio of the jet-to-outer tube diameters (epsilon), and the Schmidt number (Sc) are evaluated with the determined velocity and contaminant concentration fields. The normalized penetration depth of the jet is found to increase linearly with increasing Re(j) for epsilon = O(0.1). For a given epsilon, a ring vortex that develops is observed to be displaced downstream and radially outward from the jet tip for increasing Re(j). The axial shear stress profile along the inside wall of the outer tube possesses regions of fixed shear stress in addition to a local minimum and maximum in the vicinity of the jet tip. Corresponding regions of axial shear stress gradients exist between the fixed shear stress regions and the local extrema. Contaminant concentration gradients develop across the ring vortex indicating the inward diffusion of contaminant into the jet flow. For fixed epsilon and Sc and Re(j) approximately 900, normalized contaminant flow rate is observed to be approximately twice that of simple diffusion. This model predicts modest net axial contaminant transport enhancement due to convection-diffusion interaction in the region of the ring vortex.  相似文献   

18.
Obstructive sleep apnoea syndrome (OSAS) is a breathing disorder with a multifactorial etiology. The respiratory epithelium is lined with a thin layer of airway surface liquid preventing interactions between the airflow and epithelium. The effect of the liquid lining in OSAS pathogenesis remains poorly understood despite clinical research. Previous studies have shown that the physical properties of the airway surface liquid or altered stimulation of the airway mechanoreceptors could alleviate or intensify OSAS; however, these studies do not provide a clear physical interpretation. To study the forces transmitted from the airflow to the liquid-lined compliant wall and to discuss the effects of the airway surface liquid properties on the stimulation of the mechanoreceptors, a novel and simplified experimental system mimicking the upper airway fundamental characteristics (i.e., liquid-lined compliant wall and complex unsteady airflow features) was constructed. The fluctuating force on the compliant wall was reduced through a damping mechanism when the liquid film thickness and/or the viscosity were increased. Conversely, the liquid film damping was reduced when the surface tension decreased. Based on the experimental data, empirical correlations were developed to predict the damping potential of the liquid film. In the future, this will enable us to extend the existing computational fluid–structure interaction simulations of airflow in the human upper airway by incorporating the airway surface liquid effect without adopting two-phase flow interface tracking methods. Furthermore, the experimental system developed in this study could be used to investigate the fundamental principles of the complex once/twice-coupled physical phenomena.  相似文献   

19.
Hydrodynamic studies in an airlift reactor with an enlarged degassing zone   总被引:3,自引:0,他引:3  
The hydrodynamic behaviour of a 60?l three-phase airlift bioreactor, of the concentric draught tube type, with an enlarged degassing zone has been studied. Ca-alginate beads were used as the solid phase. Airflow rate (from 1.9 to 90.2?l/min), solids loading (0% to 40% (v/v)) and solids density (1016 and 1038?kg/m3) were manipulated and their influence on solids and gas holdup, circulation and mixing times and in the interstitial liquid velocity was determined. Riser and downcomer solids holdup was found to decrease with the increase of airflow rate and to increase with solids loading and density. On the contrary, gas holdup in the riser and in the downcomer increased with airflow rate and decreased with solids loading and density. By increasing airflow rate, a decrease in circulation time was observed while the effects of solids loading and density were negligible. Mixing time decreased with airflow rate, increased with solids density, in the studied range, and presented a maximum for solids loading of approximately 20% (v/v).  相似文献   

20.
A new technique of visualization of diffusion-convection phenomena at a solid-liquid interface using the luminol chemiluminescent reaction catalyzed by immobilized peroxidase has been previously described (Dimicoli, J.L., M. Nakache, and P. Peronneau, 1982, Biorheology, 19:281-300). We propose now a theoretical model that predicts quantitatively the light fluxes, JL, corresponding to the transfer J of the hydrogen peroxide substrate at the liquid-solid interface in a cylindrical tube for continuous flow experiments. A simple phenomenological relation, J alpha J1/mL (1 less than m less than 3) was first established for each point of the wall. Then, numerical integration showed that, independent of the laminar or turbulent character of the flow, J1/mL was proportional to (S1 Kideal)/(1 + Kideal/ET), where S1 is the bulk substrate concentration, Kideal is the ideal transport coefficient, and ET (in cm.S-1) a phenomenological first-order enzymatic rate constant per unit of wall surface. This relation proved to be satisfactory for all experimental conditions since a single mean value of ET takes into account the experimental data collected for a given enzymated tube in a large range of Reynolds number values (Re) (500 less than Re less than 9,000) and of distances from the entrance of the tube (chi greater than 0.3 cm). This quantitative analysis using a pseudo-first-order approximation interprets the observed great dependence of JL on Re(JL alpha Ren', with n' usually greater than 1/3 for laminar flows) and on S1 (JL alpha S1m). It predicts also that the laminar-to-turbulent transition can be evidenced for interfacial enzymatic activity, ET greater than 2.10(-4) cm.S-1, as observed with most of the tubes prepared by covalent binding of peroxidase on the acrylamide gel wall. The experiment had to be carried out at a pH value of 8, which corresponds to the fastest rate of the chemiluminescent reaction. The predicted entrance effects were also observed experimentally for the first time in an immobilized enzyme system. This technique appears therefore to be a valuable tool for the quantitative analysis of diffusion-convection phenomena at a liquid-solid interface with a good spatial resolution with a great range of flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号